Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation (Articolo in rivista)

Type
Label
  • Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/TAP.2012.2236531 (literal)
Alternative label
  • Iodice A.; Natale A.; Riccio D. (2013)
    Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation
    in IEEE transactions on antennas and propagation (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Iodice A.; Natale A.; Riccio D. (literal)
Pagina inizio
  • 2156 (literal)
Pagina fine
  • 2163 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.scopus.com/inward/record.url?eid=2-s2.0-84876042000&partnerID=q2rCbXpz (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 61 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 4 (literal)
Note
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Department of Electrical Engineering and Information Technology, University of Naples federico II, Naples 80125, Italy; Istituto per Il Rilevamento Elettromagnetico dell'Ambiente (IREA), Consiglio Nazionale Delle Ricerche (CNR), Naples 80124, Italy (literal)
Titolo
  • Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation (literal)
Abstract
  • Scattering from both fractional Brownian motion (fBm) and classical rough surfaces under the Kirchhoff approximation is here considered. The focus is on the scattering integral analytical expression and on its physical interpretation. First, we show that, for an fBm surface, the Kirchhoff approach scattering integral is directly proportional to a symmetric alpha-stable (S?S) distribution. The interpretation of this intriguing result leads us to revisit the meaning of the Kirchhoff solution and of the geometrical optics (GO) even for a regular (classical, nonfractal) rough surface. Then, we conclude that, for both fractal and classical surfaces, the Kirchhoff scattering integral can be interpreted in terms of a sort of 'intrinsic' two-scale model, and that, in the fractal case, the obtained $S?S$ distribution can be interpreted as the probability density function (pdf) of the slopes of an equivalent rough surface whose GO scattered power density is equal to the scattered power density of the actual fBm surface. © 1963-2012 IEEE. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it