http://www.cnr.it/ontology/cnr/individuo/prodotto/ID309523
Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow (Articolo in rivista)
- Type
- Label
- Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow (Articolo in rivista) (literal)
- Anno
- 2015-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.compfluid.2014.11.015 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Trofa M.; Vocciante M.; D'Avino G.; Hulsen M.A.; Greco F.; Maffettone P.L. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.scopus.com/inward/record.url?eid=2-s2.0-84913591315&partnerID=q2rCbXpz (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Dipartimento di Ingegneria Chimica, Dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy; Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università degli Studi di Genova, Via Montallegro 1, Genova, 16145, Italy; Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, MB Eindhoven, 5600, Netherlands; Istituto di Ricerche sulla Combustione, IRC-CNR, Piazzale Tecchio 80, Napoli, 80125, Italy (literal)
- Titolo
- Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow (literal)
- Abstract
- In this work, we present 2D numerical simulations on the migration of a particle suspended in a viscoelastic fluid under Poiseuille flow at finite Reynolds numbers, in order to clarify the simultaneous effects of viscoelasticity and inertia on the lateral particle motion.The governing equations are solved through the finite element method by adopting an Arbitrary Lagrangian-Eulerian (ALE) formulation to handle the particle motion. The high accuracy provided by such a method even for very small particle-wall distances, combined with proper stabilization techniques for viscoelastic fluids, allows obtaining convergent solutions at relatively large flow rates, as compared to previous works. As a result, the detailed non-linear dynamics of the migration phenomenon in a significant range of Reynolds and Deborah numbers is presented.The simulations show that, in agreement with the previous literature, a mastercurve relating the migration velocity of the particle to its 'vertical' position completely describes the phenomenon. Remarkably, we found that, for comparable values of the Deborah and Reynolds numbers, inertial effects are negligible: migration is in practice driven by fluid viscoelasticity only. At moderate Reynolds numbers (20. <. Re<. 200) and by lowering De, the transition from viscoelasticity-driven to inertia-driven regimes occurs through two intermediate regimes characterized by multiple stable solutions, i.e. attractors of particle trajectories at different vertical positions across the gap. At low but non-zero Reynolds numbers, only two stable solutions are found for any non-zero Deborah number in the investigated range. In particular, the wall is always an attractor for the migrating particle. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di