Exponential Convergence of the hp Version of Isogeometric Analysis in 1D (Contributo in atti di convegno)

Type
Label
  • Exponential Convergence of the hp Version of Isogeometric Analysis in 1D (Contributo in atti di convegno) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/978-3-319-01601-6_15 (literal)
Alternative label
  • Annalisa Buffa; Giancarlo Sangalli; Christoph Schwab (2014)
    Exponential Convergence of the hp Version of Isogeometric Analysis in 1D
    in ICOSAHOM 2012, Gammarth, Tunisia, 25-29 giugno 2012
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Annalisa Buffa; Giancarlo Sangalli; Christoph Schwab (literal)
Pagina inizio
  • 191 (literal)
Pagina fine
  • 203 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
  • Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
  • 95 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • IMATI \"E. Magenes\", CNR, Via Ferrata 1, 27100 Pavia, Italy; Dipartimento di Matematica \"F. Casorati\", Via Ferrata 1, 27100 Pavia, Italy SAM, ETH Zürich, HG G57.1, ETH Zentrum, CH 8092 Zürich, Switzerland; (literal)
Titolo
  • Exponential Convergence of the hp Version of Isogeometric Analysis in 1D (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-3-319-01600-9 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
  • Mejdi Azaïez, Henda El Fekih, Jan S. Hesthaven (literal)
Abstract
  • We establish exponential convergence of the hp-version of isogeometric analysis for second order elliptic problems in one spacial dimension. Specifically, we construct, for functions which are piecewise analytic with a finite number of algebraic singularities at a-priori known locations in the closure of the open domain Omega of interest, a sequence (\"! # )!!0 of interpolation operators which achieve exponential convergence. We focus on localized splines of reduced regularity so that the interpolation operators (\"! # )!!0 are Hermite type projectors onto spaces of piecewise polynomials of degree p \" ! whose differentiability increases linearly with p. As a consequence, the degree of conformity grows with N, so that asymptotically, the interpoland functions belong toCk(!) for any fixed, finite k. Extensions to twoand to three-dimensional problems by tensorization are possible. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
data.CNR.it