http://www.cnr.it/ontology/cnr/individuo/prodotto/ID308644
Exponential Convergence of the hp Version of Isogeometric Analysis in 1D (Contributo in atti di convegno)
- Type
- Label
- Exponential Convergence of the hp Version of Isogeometric Analysis in 1D (Contributo in atti di convegno) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-319-01601-6_15 (literal)
- Alternative label
Annalisa Buffa; Giancarlo Sangalli; Christoph Schwab (2014)
Exponential Convergence of the hp Version of Isogeometric Analysis in 1D
in ICOSAHOM 2012, Gammarth, Tunisia, 25-29 giugno 2012
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Annalisa Buffa; Giancarlo Sangalli; Christoph Schwab (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- IMATI \"E. Magenes\", CNR, Via Ferrata 1, 27100 Pavia, Italy;
Dipartimento di Matematica \"F. Casorati\", Via Ferrata 1, 27100 Pavia, Italy
SAM, ETH Zürich, HG G57.1, ETH Zentrum, CH 8092 Zürich, Switzerland; (literal)
- Titolo
- Exponential Convergence of the hp Version of Isogeometric Analysis in 1D (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-3-319-01600-9 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Mejdi Azaïez, Henda El Fekih, Jan S. Hesthaven (literal)
- Abstract
- We establish exponential convergence of the hp-version of isogeometric
analysis for second order elliptic problems in one spacial dimension. Specifically,
we construct, for functions which are piecewise analytic with a finite number of algebraic
singularities at a-priori known locations in the closure of the open domain
Omega of interest, a sequence (\"!
# )!!0 of interpolation operators which achieve exponential
convergence. We focus on localized splines of reduced regularity so that the
interpolation operators (\"!
# )!!0 are Hermite type projectors onto spaces of piecewise
polynomials of degree p \" ! whose differentiability increases linearly with p.
As a consequence, the degree of conformity grows with N, so that asymptotically,
the interpoland functions belong toCk(!) for any fixed, finite k. Extensions to twoand
to three-dimensional problems by tensorization are possible. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di