http://www.cnr.it/ontology/cnr/individuo/prodotto/ID306920
Balanced graph partitioning with apache spark (Contributo in volume (capitolo o saggio))
- Type
- Label
- Balanced graph partitioning with apache spark (Contributo in volume (capitolo o saggio)) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-319-14325-5_12 (literal)
- Alternative label
Carlini E., Dazzi P., Esposito A., Lulli A., Ricci L. (2014)
Balanced graph partitioning with apache spark
in , 2014
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Carlini E., Dazzi P., Esposito A., Lulli A., Ricci L. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://link.springer.com/chapter/10.1007%2F978-3-319-14325-5_12 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Note
- PuMa (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Itay; University of Pisa, Italy; University of Pisa, Italy; University of Pisa, Italy (literal)
- Titolo
- Balanced graph partitioning with apache spark (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Luís Lopes, Julius ?ilinskas, Alexandru Costan (et al...) (literal)
- Abstract
- A significant part of the data produced every day by online services is structured as a graph. Therefore, there is the need for efficient processing and analysis solutions for large scale graphs. Among the others, the balanced graph partitioning is a well known NP-complete problem with a wide range of applications. Several solutions have been proposed so far, however most of the existing state-of-the-art algorithms are not directly applicable in very large-scale distributed scenarios. A recently proposed promising alternative exploits a vertex-center heuristics to solve the balance graph partitioning problem. Their algorithm is massively parallel: there is no central coordination, and each node is processed independently. Unfortunately, we found such algorithm to be not directly exploitable in current BSP-like distributed programming frameworks. In this paper we present the adaptations we applied to the original algorithm while implementing it on Spark, a state-of-the-art distributed framework for data processing. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Insieme di parole chiave di