Harnessing quadratic optical response of two-dimensional materials through active microcavities (Articolo in rivista)

Type
Label
  • Harnessing quadratic optical response of two-dimensional materials through active microcavities (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1103/PhysRevA.90.033828 (literal)
Alternative label
  • Ciattoni, Alessandro; Rizza, Carlo (2014)
    Harnessing quadratic optical response of two-dimensional materials through active microcavities
    in Physical review. A
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Ciattoni, Alessandro; Rizza, Carlo (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 90 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 6 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 3 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Consiglio Nazionale delle Ricerche (CNR); University of Insubria (literal)
Titolo
  • Harnessing quadratic optical response of two-dimensional materials through active microcavities (literal)
Abstract
  • We propose a method for efficiently harnessing the quadratic optical response of two-dimensional graphenelike materials by theoretically investigating second-harmonic generation from a current biased sheet placed within a planar active microcavity. We show that, by tuning the cavity to resonate at the second-harmonic frequency, a highly efficient frequency doubling process is achieved (several orders of magnitude more efficient than the free-standing sheet). The efficiency of the process is not due to phase matching, which is forbidden by the localization of the nonlinear quadratic response on the two-dimensional atomic layered material, but stems from the interplay between the two-dimensional planar geometry of the nonlinear medium and the field oscillation within the active cavity near its threshold. The suggested method can easily be extended to different wave interactions and nonlinearities, and therefore it can represent a basic tool for efficiently exploiting nonlinear optical properties of two-dimensional materials. (literal)
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it