Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models (Articolo in rivista)

Type
Label
  • Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.2147/IJN.S55066 (literal)
Alternative label
  • Marianecci, Carlotta; Rinaldi, Federica; Di Marzio, Luisa; Mastriota, Marica; Pieretti, Stefano; Celia, Christian; Paolino, Donatella; Iannone, Michelangelo; Fresta, Massimo; Carafa, Maria (2014)
    Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models
    in International journal of nanomedicine (Online)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Marianecci, Carlotta; Rinaldi, Federica; Di Marzio, Luisa; Mastriota, Marica; Pieretti, Stefano; Celia, Christian; Paolino, Donatella; Iannone, Michelangelo; Fresta, Massimo; Carafa, Maria (literal)
Pagina inizio
  • 635 (literal)
Pagina fine
  • 651 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 9 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 17 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Sapienza University Rome; G d'Annunzio University of Chieti-Pescara; Istituto Superiore di Sanita'; The Methodist Hospital Research Institute; Magna Graecia University of Catanzaro; Environm Epidemiol Ctr; Consiglio Nazionale delle Ricerche (CNR) (literal)
Titolo
  • Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models (literal)
Abstract
  • Background: Liquorice extracts demonstrate therapeutic efficacy in treating dermatitis, eczema, and psoriasis when compared with corticosteroids. In this work, nonionic surfactant vesicles (niosomes, NSVs) containing polysorbate 20 (Tween 20), cholesterol, and cholesteryl hemisuccinate at different molar concentrations were used to prepare monoammonium glycyrrhizinate (AG)-loaded NSVs. The anti-inflammatory properties of AG-loaded NSVs were investigated in murine models. (literal)
  • Methods: The physicochemical properties of the NSVs were characterized using dynamic light scattering. The fluidity of the lipid bilayer was evaluated by measuring the fluorescence intensity of diphenylhexatriene. The drug entrapment efficiency of AG was assessed using high-performance liquid chromatography. The physicochemical stability of the NSVs was evaluated as a function of time using dynamic light scattering combined with Turbiscan Lab(R) Expert analysis. Serum stability was determined by incubating the NSVs with 10% v/v fetal bovine serum. The cytotoxic effects of the NSVs were investigated in human dermal fibroblasts using the Trypan blue dye exclusion assay (for cell mortality) and an MTT assay (for cell viability). Release profiles for the AG-loaded NSVs were studied in vitro using cellulose membranes. NSVs showing the most desirable physicochemical properties were selected to test for in vivo anti-inflammatory activity in murine models. The anti-inflammatory activity of the NSVs was investigated by measuring edema and nociception in mice stimulated with chemical agents. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it