Interface structure and reactivity of water-oxidation Ru-polyoxometalate catalysts on functionalized graphene electrodes (Articolo in rivista)

Type
Label
  • Interface structure and reactivity of water-oxidation Ru-polyoxometalate catalysts on functionalized graphene electrodes (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1039/c3cp54943g (literal)
Alternative label
  • Ma, Changru; Piccinin, Simone; Fabris, Stefano (2014)
    Interface structure and reactivity of water-oxidation Ru-polyoxometalate catalysts on functionalized graphene electrodes
    in PCCP. Physical chemistry chemical physics (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Ma, Changru; Piccinin, Simone; Fabris, Stefano (literal)
Pagina inizio
  • 5333 (literal)
Pagina fine
  • 5341 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 16 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 9 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 11 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • International School for Advanced Studies; Consiglio Nazionale delle Ricerche (CNR) (literal)
Titolo
  • Interface structure and reactivity of water-oxidation Ru-polyoxometalate catalysts on functionalized graphene electrodes (literal)
Abstract
  • We combine classical empirical potentials and density functional theory (DFT) calculations to characterize the catalyst/electrode interface of a promising device for artificial photosynthesis. This system consists of inorganic Ru-polyoxometalate (Ru-POM) molecules that are supported by a graphitic substrate functionalized with organic dendrimers. The experimental atomic-scale characterization of the active interface under working conditions is hampered by the complexity of its structure, composition, as well as by the presence of the electrolyte or solvent. We provide a detailed atomistic model of the electrode/catalyst interface and show that the catalyst anchoring is remarkably dependent on water solvation. A tight host-guest binding geometry between the surface dendrimers and the Ru-POM catalyst is predicted under vacuum conditions. The solvent destabilizes this geometry, leads to unfolding of the dendrimers and to their flattening on the graphitic surface. The Ru-POM catalyst binds to this organic interlayer through a stable electrostatic link between one POM termination and the charged terminations of the dendrimers. The calculated dynamics and mobility of the Ru-POM catalyst at the electrode surface are in fair agreement with the available high-resolution transmission electron microscopy data. In addition, we demonstrate that the high thermodynamic water-oxidation efficiency of the Ru-POM catalyst is not affected by the binding to the electrode, thus rationalizing the similar electrochemical performances measured for homogeneous and heterogeneous Ru-POM catalysts. (literal)
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it