http://www.cnr.it/ontology/cnr/individuo/prodotto/ID295717
A Unifying Framework for Mining Approximate Top-k Binary Patterns (Articolo in rivista)
- Type
- Label
- A Unifying Framework for Mining Approximate Top-k Binary Patterns (Articolo in rivista) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1109/TKDE.2013.181 (literal)
- Alternative label
Lucchese C., Orlando S., Perego R. (2014)
A Unifying Framework for Mining Approximate Top-k Binary Patterns
in IEEE transactions on knowledge and data engineering (Print); IEEE, New York (Stati Uniti d'America)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Lucchese C., Orlando S., Perego R. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Acronimo PROGETTO: InGeoCLOUDS
Grant Agreement: 297300
Tipo Progetto: EU (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6682889 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- PuMa (literal)
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- CNR-ISTI, Pisa, Italy; Università di Venezia, Italy; CNR-ISTI, Pisa, Italy (literal)
- Titolo
- A Unifying Framework for Mining Approximate Top-k Binary Patterns (literal)
- Abstract
- A major mining task for binary matrixes is the extraction of approximate top-k patterns that are able to concisely describe the input data. The top-k pattern discovery problem is commonly stated as an optimization one, where the goal is to minimize a given cost function, see the accuracy of the data description. In this work, we review several greedy algorithms, and discuss PANDA(+), an algorithmic framework able to optimize different cost functions generalized into a unifying formulation. We evaluated the goodness of the algorithm by measuring the quality of the extracted patterns. We adapted standard quality measures to assess the capability of the algorithm to discover both the items and transactions of the patterns embedded in the data. The evaluation was conducted on synthetic data, where patterns were artificially embedded, and on real-world text collection, where each document is labeled with a topic. Finally, in order to qualitatively evaluate the usefulness of the discovered patterns, we exploited PANDA(+) to detect overlapping communities in a bipartite network. The results show that PANDA(+) is able to discover high-quality patterns in both synthetic and real-world datasets. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Editore di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di