Approximation of incompressible large deformation elastic problems: some unresolved issues (Articolo in rivista)

Type
Label
  • Approximation of incompressible large deformation elastic problems: some unresolved issues (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/s00466-013-0869-0 (literal)
Alternative label
  • Auricchio F.; Da Veiga L.B.; Lovadina C.; Reali A.; Taylor R.L.; Wriggers P. (2013)
    Approximation of incompressible large deformation elastic problems: some unresolved issues
    in Computational mechanics; Springer, Heidelberg (Germania)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Auricchio F.; Da Veiga L.B.; Lovadina C.; Reali A.; Taylor R.L.; Wriggers P. (literal)
Pagina inizio
  • 1153 (literal)
Pagina fine
  • 1167 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://link.springer.com/article/10.1007%2Fs00466-013-0869-0 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 52 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 5 (literal)
Note
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Dipartimento di Ingegneria Civile e Architettura, Università di Pavia, Pavia, Italy; Center for Advanced Numerical Simulations-IUSS, Pavia, Italy; Dipartimento di Matematica, Università di Milano, Milan, Italy; Dipartimento di Matematica, Università di Pavia, Pavia, Italy; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, United States; Institute of Continuum Mechanics, Leibnitz University of Hannover, Hannover, Germany (literal)
Titolo
  • Approximation of incompressible large deformation elastic problems: some unresolved issues (literal)
Abstract
  • Several finite element methods for large deformation elastic problems in the nearly incompressible and purely incompressible regimes are considered. In particular, the method ability to accurately capture critical loads for the possible occurrence of bifurcation and limit points, is investigated. By means of a couple of 2D model problems involving a very simple neo-Hookean constitutive law, it is shown that within the framework of displacement/pressure mixed elements, even schemes that are inf-sup stable for linear elasticity may exhibit problems when used in the finite deformation regime. The roots of such troubles are identi-fied, but a general strategy to cure them is still missing. Furthermore, a comparison with displacement-based elements, especially of high order, is presented. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it