http://www.cnr.it/ontology/cnr/individuo/prodotto/ID292615
Fuzzy Core DBScan Clustering Algorithm (Contributo in atti di convegno)
- Type
- Label
- Fuzzy Core DBScan Clustering Algorithm (Contributo in atti di convegno) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Alternative label
Bordogna, Gloria; Ienco, Dino (2014)
Fuzzy Core DBScan Clustering Algorithm
in Information Processing And Management of Uncertainty in Knowldge Based Systems (IPMU), Montpellier, 7-2014
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Bordogna, Gloria; Ienco, Dino (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- IREA CNR, IRSTEA TETIS Lab (literal)
- Titolo
- Fuzzy Core DBScan Clustering Algorithm (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-3-319-08851-8 (literal)
- Abstract
- In this work we propose an extension of the DBSCAN algorithm to generate clusters with fuzzy density characteristics. The original version of DBSCAN requires two parameters (minPts and epsilon) to determine if a point lies in a dense area or not. Merging different dense areas results into clusters that fit the underlined dataset densities. In this approach, a single density threshold is employed for all the datasets of points while the distinct or the same set of points can exhibit different densities. In order to deal with this issue, we propose Approx Fuzzy Core DBSCAN that applies a soft constraint to model different densities, thus relaxing the rigid assumption used in the original algorithm. The proposal is compared with the classic DBSCAN. Some results are discussed on synthetic data. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi