Edge detection using real and imaginary decomposition of SAR data (Articolo in rivista)

Type
Label
  • Edge detection using real and imaginary decomposition of SAR data (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/TGRS.2013.2276917 (literal)
Alternative label
  • Baselice, F.a and Ferraioli, G.b and Reale, D.c (2014)
    Edge detection using real and imaginary decomposition of SAR data
    in IEEE transactions on geoscience and remote sensing
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Baselice, F.a and Ferraioli, G.b and Reale, D.c (literal)
Pagina inizio
  • 3833 (literal)
Pagina fine
  • 3842 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • cited By 5 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.scopus.com/inward/record.url?eid=2-s2.0-84896396999&partnerID=40&md5=c5db16b03b7b9fc09cf39a3f3b992a61 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 52 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 7 (literal)
Note
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Dipartimento di Ingegneria, Università Parthenope IREA - Istituto per il Rilevamento Elettromagnetico dell'Ambiente, CNR (literal)
Titolo
  • Edge detection using real and imaginary decomposition of SAR data (literal)
Abstract
  • The objective of synthetic aperture radar (SAR) edge detection is the identification of contours across the investigated scene, exploiting SAR complex data. Edge detectors available in the literature exploit singularly amplitude and interferometric phase information, looking for reflectivity or height difference between neighboring pixels, respectively. Recently, more performing detectors based on the joint processing of amplitude and interferometric phase data have been presented. In this paper, we propose a novel approach based on the exploitation of real and imaginary parts of single-look complex acquired data. The technique is developed in the framework of stochastic estimation theory, exploiting Markov random fields. Compared to available edge detectors, the technique proposed in this paper shows useful advantages in terms of model complexity, phase artifact robustness, and scenario applicability. Experimental results on both simulated and real TerraSAR-X and COSMO-SkyMed data show the interesting performances and the overall effectiveness of the proposed method. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it