http://www.cnr.it/ontology/cnr/individuo/prodotto/ID290420
Local Barycentric Coordinates (Articolo in rivista)
- Type
- Label
- Local Barycentric Coordinates (Articolo in rivista) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1145/2661229.2661255 (literal)
- Alternative label
Juyong Zhang; Bailin Deng; Zishun Liu; Giuseppe Patanè; Sofien Bouaziz; Kai Hormann; Ligang Liu (2014)
Local Barycentric Coordinates
in ACM transactions on graphics; ACM, Association for computing machinery, New York (Stati Uniti d'America)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Juyong Zhang; Bailin Deng; Zishun Liu; Giuseppe Patanè; Sofien Bouaziz; Kai Hormann; Ligang Liu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Articolo nr. 188 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://dl.acm.org/citation.cfm?doid=2661229.2661255 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- Google Scholar (literal)
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- University of Science and Technology of China;
Ecole polytechnique fédérale de Lausanne;
CNR - Istituto di Matematica Applicata e Tecnologie Informatiche;
Università della Svizzera italiana (literal)
- Titolo
- Local Barycentric Coordinates (literal)
- Abstract
- Barycentric coordinates yield a powerful and yet simple paradigm
to interpolate data values on polyhedral domains. They represent
interior points of the domain as an affine combination of a set of
control points, defining an interpolation scheme for any function
defined on a set of control points. Numerous barycentric coordinate
schemes have been proposed satisfying a large variety of properties.
However, they typically define interpolation as a combination of all
control points. Thus a local change in the value at a single control
point will create a global change by propagation into the whole
domain. In this context, we present a family of local barycentric
coordinates (LBC), which select for each interior point a small set
of control points and satisfy common requirements on barycentric
coordinates, such as linearity, non-negativity, and smoothness. LBC
are achieved through a convex optimization based on total variation,
and provide a compact representation that reduces memory footprint
and allows for fast deformations. Our experiments show that LBC
provide more local and finer control on shape deformation than
previous approaches, and lead to more intuitive deformation results. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di