http://www.cnr.it/ontology/cnr/individuo/prodotto/ID290208
Towards the Design of 3D Fiber-Deposited Poly (?-caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration (Articolo in rivista)
- Type
- Label
- Towards the Design of 3D Fiber-Deposited Poly (?-caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration (Articolo in rivista) (literal)
- Anno
- 2015-01-01T00:00:00+01:00 (literal)
- Alternative label
Roberto De Santis, Alessandro Russo, Antonio Gloria, Ugo D'Amora, Teresa Russo, Silvia Panseri, Monica Sandri, Anna Tampieri, Maurilio Marcacci, Valentin A Dediu, Colin J Wilde, Luigi Ambrosio (2015)
Towards the Design of 3D Fiber-Deposited Poly (?-caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration
in Journal of biomedical nanotechnology (Online)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Roberto De Santis, Alessandro Russo, Antonio Gloria, Ugo D'Amora, Teresa Russo, Silvia Panseri, Monica Sandri, Anna Tampieri, Maurilio Marcacci, Valentin A Dediu, Colin J Wilde, Luigi Ambrosio (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1 Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Viale J. F. Kennedy 54
(Mostra d'Oltremare Pad. 20), Naples 80125, Italy
2 Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna 40136, Italy
3 Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, Faenza (RA) 48018, Italy
4 Institute for Nanostructured Materials, National Research Council of Italy, Via P. Gobetti 101, I Bologna 40129, Italy
5 AvantiCell Science Limited, GibbsYard Building, Auchincruive, Ayrshire KA6 5HW, UK (literal)
- Titolo
- Towards the Design of 3D Fiber-Deposited Poly (?-caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration (literal)
- Abstract
- In the past few years, researchers have focused on the design and development of three-dimensional (3D) advanced scaf-
folds, which offer significant advantages in terms of cell performance. The introduction of magnetic features into scaffold
technology could offer innovative opportunities to control cell populations within 3D microenvironments, with the potential
to enhance their use in tissue regeneration or in cell-based analysis. In the present study, 3D fully biodegradable and
magnetic nanocomposite scaffolds for bone tissue engineering, consisting of a poly( ? -caprolactone) (PCL) matrix rein-
forced with iron-doped hydroxyapatite (FeHA) nanoparticles, were designed and manufactured using a rapid prototyping
technique. The performances of these novel 3D PCL/FeHA scaffolds were assessed through a combination of theoretical
evaluation, experimental in vitro analyses and in vivo testing in a rabbit animal model. The results from mechanical com-
pression tests were consistent with FEM simulations. The in vitro results showed that the cell growth in the magnetized
scaffolds was 2.2-fold greater than that in non-magnetized ones. In vivo experiments further suggested that, after only
4 weeks, the PCL/FeHA scaffolds were completely filled with newly formed bone, proving a good level of histocompatibil-
ity. All of the results suggest that the introduction of magnetic features into biocompatible materials may confer significant
advantages in terms of 3D cell assembly (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi