Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures (Articolo in rivista)

Type
Label
  • Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1093/jxb/eru033 (literal)
Alternative label
  • Pollastri S., Tsonev T., Loreto F. (2014)
    Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures
    in Journal of experimental botany (Online)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Pollastri S., Tsonev T., Loreto F. (literal)
Pagina inizio
  • 1565 (literal)
Pagina fine
  • 1570 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.scopus.com/inward/record.url?eid=2-s2.0-84897375759&partnerID=q2rCbXpz (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 65 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 6 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Tsonev T.:Bulgarian Academy of Sciences, Institute of Plant Physiology and Genetics, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria (literal)
Titolo
  • Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures (literal)
Abstract
  • Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate. © The Author 2014. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it