The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect (Articolo in rivista)

Type
Label
  • The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.jctb.2014.02.006 (literal)
Alternative label
  • Galluccio, A.; Gentile, C.; Ventura, P. (2014)
    The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect
    in Journal of combinatorial theory. Series B (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Galluccio, A.; Gentile, C.; Ventura, P. (literal)
Pagina inizio
  • 92 (literal)
Pagina fine
  • 122 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 107 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 31 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Consiglio Nazionale delle Ricerche (CNR) (literal)
Titolo
  • The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect (literal)
Abstract
  • Fuzzy antihat graphs are graphs obtained as 2-clique-bond compositions of fuzzy line graphs with three different types of three-cliqued graphs. By the decomposition theorem of Chudnovsky and Seymour [2], fuzzy antihat graphs form a large subclass of claw-free, not quasi-line graphs with stability number at least four and with no 1-joins. A graph is W-perfect if its stable set polytope is described by: nonnegativity, rank, and lifted 5-wheel inequalities. By exploiting the polyhedral properties of the 2-clique-bond composition, we prove that fuzzy antihat graphs are W-perfect and we move a crucial step towards the solution of the longstanding open question of finding an explicit linear description of the stable set polytope of claw-free graphs. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it