http://www.cnr.it/ontology/cnr/individuo/prodotto/ID288639
The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect (Articolo in rivista)
- Type
- Label
- The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect (Articolo in rivista) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.jctb.2014.02.006 (literal)
- Alternative label
Galluccio, A.; Gentile, C.; Ventura, P. (2014)
The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect
in Journal of combinatorial theory. Series B (Print)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Galluccio, A.; Gentile, C.; Ventura, P. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Consiglio Nazionale delle Ricerche (CNR) (literal)
- Titolo
- The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect (literal)
- Abstract
- Fuzzy antihat graphs are graphs obtained as 2-clique-bond compositions of fuzzy line graphs with three different types of three-cliqued graphs. By the decomposition theorem of Chudnovsky and Seymour [2], fuzzy antihat graphs form a large subclass of claw-free, not quasi-line graphs with stability number at least four and with no 1-joins. A graph is W-perfect if its stable set polytope is described by: nonnegativity, rank, and lifted 5-wheel inequalities. By exploiting the polyhedral properties of the 2-clique-bond composition, we prove that fuzzy antihat graphs are W-perfect and we move a crucial step towards the solution of the longstanding open question of finding an explicit linear description of the stable set polytope of claw-free graphs. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di