Rationalizing the Lacking of Inversion Symmetry in a Noncentrosymmetric Polar Racemate: An Experimental and Theoretical Study (Articolo in rivista)

Type
Label
  • Rationalizing the Lacking of Inversion Symmetry in a Noncentrosymmetric Polar Racemate: An Experimental and Theoretical Study (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1021/cg501074x (literal)
Alternative label
  • Leonardo Lo Presti, Mattia Sist, Laura Loconte, Andrea Pinto, Lucia Tamborini, and Carlo Gatti (2014)
    Rationalizing the Lacking of Inversion Symmetry in a Noncentrosymmetric Polar Racemate: An Experimental and Theoretical Study
    in Crystal growth & design; ACS, American chemical society, Washington, DC (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Leonardo Lo Presti, Mattia Sist, Laura Loconte, Andrea Pinto, Lucia Tamborini, and Carlo Gatti (literal)
Pagina inizio
  • 5822 (literal)
Pagina fine
  • 5833 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 14 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 12 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Università degli Studi di Milano, Department of Chemistry, Via Golgi 19 I-20133 Milano, Italy ? Center for Materials Crystallography, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark § CNR-ISTM, Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19 I-20133 Milano, Italy ? Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano,Via Mangiagalli 25, 20133 Milano, Italy (literal)
Titolo
  • Rationalizing the Lacking of Inversion Symmetry in a Noncentrosymmetric Polar Racemate: An Experimental and Theoretical Study (literal)
Abstract
  • The total charge density of PYRAC, a polar (Pca21) organic racemate with Z? = 2, was derived from high-resolution single-crystal X-ray diffraction data at T = 100(2) K and periodic DFT calculations. The PYRAC asymmetric unit consists of a hydrogen-bonded pair of conformationally different enantiomers, A and Bi, where the subscript \"i\" indicates a reversed absolute configuration. The lattice stability was compared with that of centrosymmetric possibly competing structures, with the aim of understanding why a noncentrosymmetric lattice framework is obtained from a racemic mixture. The likelihood of specific intermolecular recognition processes among different conformers of PYRAC in the very first stages of nucleation was investigated by DFT simulations in vacuo. Two competing, equivalent interconversion pseudorotatory paths between the most stable A and the least stable B conformers were found. It results that molecules spend most of their time (?53%) in the A conformation, whereas the B one is far less populated (?7%). Therefore, centrosymmetric AAi adducts are formed very frequently in the reaction liquor, whereas the BBi ones are rare. Nevertheless, AAi pairs produce crystal forms with cohesive energies and densities significantly less favorable than those estimated for the noncentrosymmetric heterochiral ABi ones. Therefore, preference for Z? = 2 in conjunction with noncentrosymmetric point and space groups results from the thermodynamic control of the crystallization process. The capability of forming extended hydrogen bond chains throughout the lattice appears to be a prerequisite to bind together the fundamental ABi repeating units (literal)
Editore
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
data.CNR.it