Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method (Articolo in rivista)

Type
Label
  • Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1039/c4lc00290c (literal)
Alternative label
  • Bianco, Vittorio; Merola, Francesco; Miccio, Lisa; Memmolo, Pasquale; Gennari, Oriella; Paturzo, Melania; Netti, Paolo Antonio; Ferraro, Pietro (2014)
    Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method
    in Lab on a chip (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Bianco, Vittorio; Merola, Francesco; Miccio, Lisa; Memmolo, Pasquale; Gennari, Oriella; Paturzo, Melania; Netti, Paolo Antonio; Ferraro, Pietro (literal)
Pagina inizio
  • 2499 (literal)
Pagina fine
  • 2504 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 14 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 6 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 14 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-National Institute of Optics (INO), Via Campi Flegrei 34, I-80078 Pozzuoli (NA), Italy; Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, L. Barsanti e Matteucci (NA) 53 I-80125, Italy (literal)
Titolo
  • Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method (literal)
Abstract
  • Imaging through turbid media is a challenging topic. A liquid is considered turbid when dispersed particles provoke strong light scattering, thus destroying the image formation by any standard optical system. Generally, colloidal solutions belong to the class of turbid media since dispersed particles have dimensions ranging between 0.2 mu m and 2 mu m. However, in microfluidics, another relevant issue has to be considered in the case of flowing liquid made of a multitude of occluding objects, e.g. red blood cells (RBCs) flowing in veins. In such a case instead of severe scattering processes unpredictable phase delays occur resulting in a wavefront distortion, thus disturbing or even hindering the image formation of objects behind such obstructing layer. In fact RBCs can be considered to be thin transparent phase objects. Here we show that sharp amplitude imaging and phase-contrast mapping of cells hidden behind biological occluding objects, namely RBCs, is possible in harsh noise conditions and with a large field-of view by Multi-Look Digital Holography microscopy (ML-DH). Noteworthy, we demonstrate that ML-DH benefits from the presence of the RBCs, providing enhancement in terms of numerical resolution and noise suppression thus obtaining images whose quality is higher than the quality achievable in the case of a liquid without occlusive objects. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it