Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems (Articolo in rivista)

Type
Label
  • Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems (Articolo in rivista) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.jcp.2010.12.039 (literal)
Alternative label
  • Lipnikov, K.; Manzini, G.; Svyatskiy, D. (2011)
    Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems
    in Journal of computational physics (Print); Academic Press Elsevier, Inc., San Diego (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Lipnikov, K.; Manzini, G.; Svyatskiy, D. (literal)
Pagina inizio
  • 2620 (literal)
Pagina fine
  • 2642 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.sciencedirect.com/science/article/pii/S0021999110007138 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 230 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 23 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 7 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Los Alamos National Laboratory; IMATI CNR, Pavia; IUSS, Pavia; Los Alamos National Laboratory (literal)
Titolo
  • Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems (literal)
Abstract
  • The maximum principle is one of the most important properties of solutions of partial differential equations. Its numerical analog, the discrete maximum principle (DMP), is one of the most difficult properties to achieve in numerical methods, especially when the computational mesh is distorted to adapt and conform to the physical domain or the problem coefficients are highly heterogeneous and anisotropic. Violation of the DMP may lead to numerical instabilities such as oscillations and to unphysical solutions such as heat flow from a cold material to a hot one. In this work, we investigate sufficient conditions to ensure the monotonicity of the mimetic finite difference (MFD) method on two- and three-dimensional meshes. These conditions result in a set of general inequalities for the elements of the mass matrix of every mesh element. Efficient solutions are devised for meshes consisting of simplexes, parallelograms and parallelepipeds, and orthogonal locally refined elements as those used in the AMR methodology. On simplicial meshes, it turns out that the MFD method coincides with the mixed-hybrid finite element methods based on the low-order Raviart-Thomas vector space. Thus, in this case we recover the well-established conventional angle conditions of such approximations. Instead, in the other cases a suitable design of the MFD method allows us to formulate a monotone discretization for which the existence of a DMP can be theoretically proved. Moreover, on meshes of parallelograms we establish a connection with a similar monotonicity condition proposed for the Multi-Point Flux Approximation (MPFA) methods. Numerical experiments confirm the effectiveness of the considered monotonicity conditions. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it