http://www.cnr.it/ontology/cnr/individuo/prodotto/ID284459
Characterization and simulation of the heat transfer behaviour of water-based ZnO nanofluids (Articolo in rivista)
- Type
- Label
- Characterization and simulation of the heat transfer behaviour of water-based ZnO nanofluids (Articolo in rivista) (literal)
- Anno
- 2015-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1166/jnn.2015.9864 (literal)
- Alternative label
L. Colla, L. Marinelli, L. Fedele, S. Bobbo, O. Manca (2015)
Characterization and simulation of the heat transfer behaviour of water-based ZnO nanofluids
in Journal of nanoscience and nanotechnology (Print)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- L. Colla, L. Marinelli, L. Fedele, S. Bobbo, O. Manca (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Pubblicato online 6 ottobre 2014 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche, Croso Stati Uniti 4, 35131 Padova, Italy
Dipartimento di Ingegneria Industriale e dell'Informazione, Seconda Università degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE), Italy (literal)
- Titolo
- Characterization and simulation of the heat transfer behaviour of water-based ZnO nanofluids (literal)
- Abstract
- This paper deals with the characterization and modelling of water-based nanofluids containing zinc oxide (ZnO) nanoparticles in concentrations ranging between 1 and 10 wt%. Low concentrations were chosen to reduce fouling and excessive pressure drops. First of all, the stability was verified by means of an instrument, based on the dynamic light scattering (DLS) technique, measuring mean nanoparticle diameters and Zeta potential. Moreover, nanofluids pH was measured. Then, Thermal conductivities and dynamic viscosities were measured, analysing their dependence on temperature
and nanoparticle concentration. Thermal conductivity was measured by means of a hot disk apparatus in the temperature range between 10 and 70 ?C, while viscosity was measured by a magnetic suspension rheometer in the same range of temperatures. Finally, the heat transfer capability of these fluids was studied measuring their heat transfer coefficients in a dedicated apparatus between 18 and 40 ?C. Heat transfer coefficient was evaluated at different Reynolds number, in turbulent flow regime. Reynolds and Nusselt numbers were deduced by using previously measured thermal
conductivity and viscosity values. Moreover, numerical simulations in two-dimensional turbulent and steady state flow were carried out. No increase in heat transfer coefficient in the temperature range
between 18 and 40 ?C was found. Comparison between experimental and numerical simulation data, in terms of wall temperature profiles, showed a good agreement. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di