http://www.cnr.it/ontology/cnr/individuo/prodotto/ID283165
Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere. (Articolo in rivista)
- Type
- Label
- Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere. (Articolo in rivista) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.scitotenv.2014.06.012 (literal)
- Alternative label
Da Pieve, Fabiana; Stankowski, Martin; Hogan, Conor (2014)
Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere.
in Science of the total environment
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Da Pieve, Fabiana; Stankowski, Martin; Hogan, Conor (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.sciencedirect.com/science/article/pii/S0048969714008559 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Université libre de Bruxelles (U.L.B.), Boulevard du Triomphe, CP 231, Campus Plaine, B-1050 Bruxelles, Belgium;
LU Open Innovation Center, Lund University, Box 117, SE-221 00 Lund, Sweden;
European Theoretical Spectroscopy Facility (ETSF),
Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia (CNR-ISM), University of Rome \"Tor Vergata\", via Fosso del Cavaliere 100, 00133 Rome, Italy,
Physics Department, University of Rome \"Tor Vergata\", via Fosso del Cavaliere 100, 00133 Rome, Italy (literal)
- Titolo
- Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere. (literal)
- Abstract
- Mercury is a hazardous environmental pollutant mobilized from natural sources, and anthropogenically contaminated and disturbed areas. Current methods to assess mobility and environmental impact are mainly based on field measurements, soil monitoring, and kinetic modelling. In order to understand in detail the extent to which different mineral sources can give rise to mercury release it is necessary to investigate the complexity at the microscopic level and the possible degradation/dissolution processes. In this work, we investigated the potential for mobilization of mercury structurally trapped in three relevant minerals occurring in hot spring environments and mining areas, namely, cinnabar (alpha-HgS), corderoite (alpha-Hg3S2Cl2), and mercuric chloride (HgCl2). Quantum chemical methods based on density functional theory as well as more sophisticated approaches are used to assess the possibility of a) direct photoreduction and formation of elemental Hg at the surface of the minerals, providing a path for ready release in the environment; and b) reductive dissolution of the minerals in the presence of solutions containing halogens. Furthermore, we study the use of TiO2 as a potential photocatalyst for decontamination of polluted waters (mainly Hg(2+)-containing species) and air (atmospheric Hg(0)). Our results partially explain the observed pathways of Hg mobilization from relevant minerals and the microscopic mechanisms behind photocatalytic removal of Hg-based pollutants. Possible sources of disagreement with observations are discussed and further improvements to our approach are suggested. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di