http://www.cnr.it/ontology/cnr/individuo/prodotto/ID282742
Cache-oblivious peeling of random hypergraphs (Contributo in atti di convegno)
- Type
- Label
- Cache-oblivious peeling of random hypergraphs (Contributo in atti di convegno) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1109/DCC.2014.48 (literal)
- Alternative label
Belazzougui D., Boldi P., Ottaviano G., Venturini R., Vigna S. (2014)
Cache-oblivious peeling of random hypergraphs
in DCC 2014 - Data Compression Conference, Snowbird, Utah, USA, 26-28 March 2014
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Belazzougui D., Boldi P., Ottaviano G., Venturini R., Vigna S. (literal)
- Pagina inizio
- Pagina fine
- Note
- PuMa (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Department of Computer Science, University of Helsinki, Finland; Department of Computer Science, University of Milan, Italy; CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Italy; Department of Computer Science, University of Milan, Italy; (literal)
- Titolo
- Cache-oblivious peeling of random hypergraphs (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-1-4799-3882-7 (literal)
- Abstract
- The computation of a peeling order in a randomly generated hypergraph is the most time- consuming step in a number of constructions, such as perfect hashing schemes, random r-SAT solvers, error-correcting codes, and approximate set encodings. While there exists a straightforward linear time algorithm, its poor I/O performance makes it impractical for hypergraphs whose size exceeds the available internal memory. We show how to reduce the computation of a peeling order to a small number of sequential scans and sorts, and analyze its I/O complexity in the cache-oblivious model. The resulting algorithm requires O(sort(n)) I/Os and O(n log n) time to peel a random hypergraph with n edges. We experimentally evaluate the performance of our implementation of this algorithm in a real- world scenario by using the construction of minimal perfect hash functions (MPHF) as our test case: our algorithm builds a MPHF of 7.6 billion keys in less than 21 hours on a single machine. The resulting data structure is both more space-efficient and faster than that obtained with the current state-of-the-art MPHF construction for large-scale key sets. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Insieme di parole chiave di