Return currents and energy transport in the solar flaring atmosphere (Articolo in rivista)

Type
Label
  • Return currents and energy transport in the solar flaring atmosphere (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1088/0004-637X/773/2/121 (literal)
Alternative label
  • Anna Codispoti1, Gabriele Torre1;2, Michele Piana1; 2 & Nicola Pinamonti1 (2013)
    Return currents and energy transport in the solar flaring atmosphere
    in Astrophysical journal (Online)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Anna Codispoti1, Gabriele Torre1;2, Michele Piana1; 2 & Nicola Pinamonti1 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.scopus.com/inward/record.url?eid=2-s2.0-84881405913&partnerID=q2rCbXpz (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 773 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 2 (literal)
Note
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1 Dipartimento di Matematica, Universit?a di Genova, via Dodecaneso 35, 16146 Genova, Italy 2 CNR - SPIN, via Dodecaneso 33, I-16146 Genova, Italy (literal)
Titolo
  • Return currents and energy transport in the solar flaring atmosphere (literal)
Abstract
  • According to the standard Ohmic perspective, the injection of accelerated electrons into the flaring region violates local charge equilibrium and therefore, in response, return currents are driven by an electric field to equilibrate such charge violation. In this framework, the energy loss rate associated with these local currents has an Ohmic nature and significantly shortens the accelerated electron path. In the present paper, we adopt a different viewpoint and, specifically, we study the impact of the background drift velocity on the energy loss rate of accelerated electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy loss rate when the collisional target has a finite temperature and the background instantaneously and coherently moves up to equilibrate the electron injection. We then use the continuity equation for electrons and imaging spectroscopy data provided by RHESSI to validate this model. We show that this new formula for the energy loss rate provides a better fit of the experimental data with respect to the model based on the effects of standard Ohmic return currents. © 2013. The American Astronomical Society. All rights reserved.. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it