Multi-party metering: an architecture for privacy-preserving profiling schemes (Contributo in atti di convegno)

Type
Label
  • Multi-party metering: an architecture for privacy-preserving profiling schemes (Contributo in atti di convegno) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/SustainIT.2013.6685212 (literal)
Alternative label
  • Barcellona C., Cassarà P., Di Bella G., Golic J., Tinnirello I. (2013)
    Multi-party metering: an architecture for privacy-preserving profiling schemes
    in SustainIT 2013 - Sustainable Internet and ICT for Sustainability, Palermo, Italy, 30-31 October 2013
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Barcellona C., Cassarà P., Di Bella G., Golic J., Tinnirello I. (literal)
Pagina inizio
  • 1 (literal)
Pagina fine
  • 6 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6685212 (literal)
Note
  • PuMa (literal)
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Università degli Studi di Palermo, Italy; CNR-ISTI, Pisa, Italy; Università degli Studi di Palermo, Italy; Telecom Italia, Italy; Università degli Studi di Palermo, Italy; (literal)
Titolo
  • Multi-party metering: an architecture for privacy-preserving profiling schemes (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-3-901882-56-2 (literal)
Abstract
  • Several privacy concerns about the massive deploy- ment of smart meters have been arisen recently. Namely, it has been shown that the fine-grained temporal traces generated by these meters can be correlated with different users behaviors. A new architecture, called multi-party metering, for enabling privacy-preserving analysis of high-frequency metering data without requiring additional complexity at the smart meter side is here proposed. The idea is to allow multiple entities to get a share of the high-frequency metering data rather than the real data, where this share does not reveal any information about the real data. By aggregating the shares provided by different users and publishing the results, these entities can statistically analyze the consumption data, without disclosing sensitive information of the users. In particular, it is proposed how to implement a user profiling clustering mechanism in this architecture. The envisaged solution is tested on synthetic electricity consumption data and real gas consumption data. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Editore di
Insieme di parole chiave di
data.CNR.it