http://www.cnr.it/ontology/cnr/individuo/prodotto/ID278620
LearNext: learning to predict tourists movements (Abstract/Comunicazione in atti di convegno)
- Type
- Label
- LearNext: learning to predict tourists movements (Abstract/Comunicazione in atti di convegno) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Alternative label
Baraglia R., Muntean C. I., Nardini F.M., Silvestri F. (2014)
LearNext: learning to predict tourists movements
in 5th Italian Information Retrieval Workshop, University of Roma Tor Vergata, 21-22 January 2014
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Baraglia R., Muntean C. I., Nardini F.M., Silvestri F. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://ceur-ws.org/Vol-1127/paper10.pdf (literal)
- Note
- Scopu (literal)
- Abstract (literal)
- PuMa (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- CNR-ISTI, Pisa, Italy;
CNR-ISTI, Pisa, Italy;
CNR-ISTI, Pisa, Italy;
Yahoo! Research, Barcelona, Spain; (literal)
- Titolo
- LearNext: learning to predict tourists movements (literal)
- Abstract
- In this paper, we tackle the problem of predicting the \"next\" geographical position of a tourist given her history (i.e., the prediction is done accordingly to the tourist's current trail) by means of supervised learning techniques, namely Gradient Boosted Regression Trees and Rank- ing SVM. The learning is done on the basis of an object space represented by a 68 dimension feature vector, specifically designed for tourism related data. Furthermore, we propose a thorough comparison of several methods that are considered state-of-the-art in touristic recommender and trail prediction systems as well as a strong popularity baseline. Experiments show that the methods we propose outperform important competitors and baselines thus providing strong evidence of the performance of our solutions. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Insieme di parole chiave di