Flood-driven transport of sediment, particulate organic matter, and nutrients from the Po River watershed to the Mediterranean Sea. (Articolo in rivista)

Type
Label
  • Flood-driven transport of sediment, particulate organic matter, and nutrients from the Po River watershed to the Mediterranean Sea. (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.jhydrol.2013.06.001 (literal)
Alternative label
  • T. Tesi a, b, S. Miserocchi b, F. Acri c, L. Langone b, A. Boldrin c, J.A. Hatten d, S. Albertazzi b (2013)
    Flood-driven transport of sediment, particulate organic matter, and nutrients from the Po River watershed to the Mediterranean Sea.
    in Journal of hydrology (Amst.)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • T. Tesi a, b, S. Miserocchi b, F. Acri c, L. Langone b, A. Boldrin c, J.A. Hatten d, S. Albertazzi b (literal)
Pagina inizio
  • 144 (literal)
Pagina fine
  • 152 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 498 (literal)
Rivista
Note
  • PuM (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • a Department of Applied Environmental Science, Stockholm University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden b Istituto di Scienze Marine CNR - Sede di Bologna, Via P. Gobetti, 101 40129 Bologna, Italy c Istituto Scienze Marine CNR - Sede di Venezia, Castello 1364/A, 30122 Venezia, Italy d Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University, 280 Peavy Hall, Corvallis, OR 97331, USA (literal)
Titolo
  • Flood-driven transport of sediment, particulate organic matter, and nutrients from the Po River watershed to the Mediterranean Sea. (literal)
Abstract
  • The Po River (Northern Italy) discharge represents a considerable input of the land-derived material entering the Mediterranean Sea. Most of its particulate and dissolved constituents are supplied to the sea in response to short-lived climate events. Although these floods exert first-order control on the transport of organic and inorganic elements, both composition and magnitude of the river material are poorly constrained during high discharge periods. In order to fill this knowledge gap, in this study we carried out an event response sampling in the Po River in November 2011. Beginning in early November, intense rainfall occurred in the Po watershed that resulted in a flood of ~6000 m3 s-1 (2.5 year return period). Water samples were collected from the river before and during the flood. Dissolved nitrate, nitrite, ammonia, and silicate were measured and the particulate material was analyzed for total suspended sediment, elemental composition, ?13C, ?15N, grain-size, and 137Cs activity. Our results showed a temporal decoupling between solid and water discharge implying that predicted sediment loads simply derived from sediment rating curves could potentially give rise to large errors, especially when calculations are used to understand the sediment export in response short-lived events. The suspended organic material during high flow was dominated by soil organic matter while high ?15N indicated the influence of an additional 15N-enriched source (e.g., manure, sewage, and algal biomass) during low discharge. Because the concentrations of nitrite and ammonia were positively correlated with the content of particulate material in suspension, we inferred that nitrite and ammonia concentrations were driven by either bacteria activity (ammonification-nitrification) or ionic exchange whose rates were proportional to concentration of the suspended material. In addition, due to the dilution with nitrate-poor rainfall, the concentration of nitrate decreased with increasing water discharge. High concentrations of nitrate were instead attributable to the influx of nitrate-rich water from groundwater that is chronically contaminated and constitutes most of the baseflow during low flow. Our results indicate that the event-dominated transport in the Po drainage basin is particularly important for the organic matter supply as flood events account for at least one-third of the particulate annual export (organic carbon and nitrogen). Finally, this study has demonstrated the utility of event-response sampling for understanding the importance of event-dominated transport in rivers. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it