Privacy-preserving Distributed Movement Data Aggregation (Contributo in volume (capitolo o saggio))

Type
Label
  • Privacy-preserving Distributed Movement Data Aggregation (Contributo in volume (capitolo o saggio)) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/978-3-319-00615-4_13 (literal)
Alternative label
  • Monreale A., Wang W.H., Pratesi F., Rinzivillo S., Pedreschi D., Andrienko G., Andrienko N. (2013)
    Privacy-preserving Distributed Movement Data Aggregation
    in Geographic Information Science at the Heart of Europe, 2013
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Monreale A., Wang W.H., Pratesi F., Rinzivillo S., Pedreschi D., Andrienko G., Andrienko N. (literal)
Pagina inizio
  • 225 (literal)
Pagina fine
  • 245 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • grant agreement 270833 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://link.springer.com/chapter/10.1007%2F978-3-319-00615-4_13 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
  • Geographic Information Science at the Heart of Europe (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
  • 2013 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • PuMa (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Computer Science Department, University of Pisa, Italy; Stevens Institute of Technology, New Jork, USA; Computer Science Department, University of Pisa, Italy; CNR-ISTI, Pisa; Computer Science Department, University of Pisa, Italy; Fraunhofer IAIS Sankt, Augustin, Germany; Fraunhofer IAIS Sankt, Augustin, Germany (literal)
Titolo
  • Privacy-preserving Distributed Movement Data Aggregation (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-3-319-00614-7 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
  • Danny Vandenbroucke, Bénédicte Bucher, Joep Crompvoets (literal)
Abstract
  • We propose a novel approach to privacy-preserving analytical processing within a distributed setting, and tackle the problem of obtaining aggregated information about vehicle traffic in a city from movement data collected by individual vehicles and shipped to a central server. Movement data are sensitive because people's whereabouts have the potential to reveal intimate personal traits, such as religious or sexual preferences, and may allow re-identification of individuals in a database. We provide a privacy-preserving framework for movement data aggregation based on trajectory generalization in a distributed environment. The proposed solution, based on the differential privacy model and on sketching techniques for efficient data compression, provides a formal data protection safeguard. Using real-life data, we demonstrate the effectiveness of our approach also in terms of data utility preserved by the data transformation. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Insieme di parole chiave di
data.CNR.it