http://www.cnr.it/ontology/cnr/individuo/prodotto/ID277834
Privacy-preserving Distributed Movement Data Aggregation (Contributo in volume (capitolo o saggio))
- Type
- Label
- Privacy-preserving Distributed Movement Data Aggregation (Contributo in volume (capitolo o saggio)) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-319-00615-4_13 (literal)
- Alternative label
Monreale A., Wang W.H., Pratesi F., Rinzivillo S., Pedreschi D., Andrienko G., Andrienko N. (2013)
Privacy-preserving Distributed Movement Data Aggregation
in Geographic Information Science at the Heart of Europe, 2013
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Monreale A., Wang W.H., Pratesi F., Rinzivillo S., Pedreschi D., Andrienko G., Andrienko N. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- grant agreement 270833 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://link.springer.com/chapter/10.1007%2F978-3-319-00615-4_13 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Geographic Information Science at the Heart of Europe (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Note
- ISI Web of Science (WOS) (literal)
- PuMa (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Computer Science Department, University of Pisa, Italy; Stevens Institute of Technology, New Jork, USA; Computer Science Department, University of Pisa, Italy; CNR-ISTI, Pisa; Computer Science Department, University of Pisa, Italy; Fraunhofer IAIS Sankt, Augustin, Germany; Fraunhofer IAIS Sankt, Augustin, Germany (literal)
- Titolo
- Privacy-preserving Distributed Movement Data Aggregation (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-3-319-00614-7 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Danny Vandenbroucke, Bénédicte Bucher, Joep Crompvoets (literal)
- Abstract
- We propose a novel approach to privacy-preserving analytical processing within a distributed setting, and tackle the problem of obtaining aggregated information about vehicle traffic in a city from movement data collected by individual vehicles and shipped to a central server. Movement data are sensitive because people's whereabouts have the potential to reveal intimate personal traits, such as religious or sexual preferences, and may allow re-identification of individuals in a database. We provide a privacy-preserving framework for movement data aggregation based on trajectory generalization in a distributed environment. The proposed solution, based on the differential privacy model and on sketching techniques for efficient data compression, provides a formal data protection safeguard. Using real-life data, we demonstrate the effectiveness of our approach also in terms of data utility preserved by the data transformation. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Insieme di parole chiave di