Privacy-aware distributed mobility data analytics (Contributo in atti di convegno)

Type
Label
  • Privacy-aware distributed mobility data analytics (Contributo in atti di convegno) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Alternative label
  • Pratesi F., Monreale A., Wang H., Rinzivillo S., Pedreschi D., Andrienko G., Andrienko N. (2013)
    Privacy-aware distributed mobility data analytics
    in SEBD 2013 - 21st Italian Symposium on Advanced Database Systems, Roccella Jonica, Reggio Calabria, Italy, 30 June - 3 July 2013
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Pratesi F., Monreale A., Wang H., Rinzivillo S., Pedreschi D., Andrienko G., Andrienko N. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • grant agreement 255951 (literal)
Note
  • Scopu (literal)
  • PuMa (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-ISTI, Pisa, Italy; Computer Science Department, University of Pisa, Italy; Stevens Institute of Technology, NJ, USA; CNR-ISTI, Pisa, Italy; Computer Science Department, University of Pisa, Italy; Fraunhofer Institute for Intelligent Analysis and Information Systems, Germany; Fraunhofer IAIS Intelligent Analysis and Information Systems, Sankt Augustin University, Bonn, Germany (literal)
Titolo
  • Privacy-aware distributed mobility data analytics (literal)
Abstract
  • We propose an approach to preserve privacy in an analytical process- ing within a distributed setting, and tackle the problem of obtaining aggregated information about vehicle traffic in a city from movement data collected by in- dividual vehicles and shipped to a central server. Movement data are sensitive because they may describe typical movement behaviors and therefore be used for re-identification of individuals in a database. We provide a privacy-preserving framework for movement data aggregation based on trajectory generalization in a distributed environment. The proposed solution, based on the differential pri- vacy model and on sketching techniques for efficient data compression, provides a formal data protection safeguard. Using real-life data, we demonstrate the ef- fectiveness of our approach also in terms of data utility preserved by the data transformation. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Insieme di parole chiave di
data.CNR.it