http://www.cnr.it/ontology/cnr/individuo/prodotto/ID277788
Privacy-aware distributed mobility data analytics (Contributo in atti di convegno)
- Type
- Label
- Privacy-aware distributed mobility data analytics (Contributo in atti di convegno) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Alternative label
Pratesi F., Monreale A., Wang H., Rinzivillo S., Pedreschi D., Andrienko G., Andrienko N. (2013)
Privacy-aware distributed mobility data analytics
in SEBD 2013 - 21st Italian Symposium on Advanced Database Systems, Roccella Jonica, Reggio Calabria, Italy, 30 June - 3 July 2013
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Pratesi F., Monreale A., Wang H., Rinzivillo S., Pedreschi D., Andrienko G., Andrienko N. (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- grant agreement 255951 (literal)
- Note
- Scopu (literal)
- PuMa (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- CNR-ISTI, Pisa, Italy; Computer Science Department, University of Pisa, Italy; Stevens Institute of Technology, NJ, USA; CNR-ISTI, Pisa, Italy; Computer Science Department, University of Pisa, Italy; Fraunhofer Institute for Intelligent Analysis and Information Systems, Germany; Fraunhofer IAIS Intelligent Analysis and Information Systems, Sankt Augustin University, Bonn, Germany (literal)
- Titolo
- Privacy-aware distributed mobility data analytics (literal)
- Abstract
- We propose an approach to preserve privacy in an analytical process- ing within a distributed setting, and tackle the problem of obtaining aggregated information about vehicle traffic in a city from movement data collected by in- dividual vehicles and shipped to a central server. Movement data are sensitive because they may describe typical movement behaviors and therefore be used for re-identification of individuals in a database. We provide a privacy-preserving framework for movement data aggregation based on trajectory generalization in a distributed environment. The proposed solution, based on the differential pri- vacy model and on sketching techniques for efficient data compression, provides a formal data protection safeguard. Using real-life data, we demonstrate the ef- fectiveness of our approach also in terms of data utility preserved by the data transformation. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Insieme di parole chiave di