Multisensor data fusion for activity recognition based on reservoir computing (Contributo in atti di convegno)

Type
Label
  • Multisensor data fusion for activity recognition based on reservoir computing (Contributo in atti di convegno) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/978-3-642-41043-7_3 (literal)
Alternative label
  • Palumbo F., Barsocchi P., Gallicchio C., Chessa S., Micheli A. (2013)
    Multisensor data fusion for activity recognition based on reservoir computing
    in EvAAL 2013 - Evaluating AAL Systems Through Competitive Benchmarking. International Competitions and Final Workshop, Madrid-Valencia, Spain, July and September 2013
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Palumbo F., Barsocchi P., Gallicchio C., Chessa S., Micheli A. (literal)
Pagina inizio
  • 24 (literal)
Pagina fine
  • 35 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • UNIVERSsal open platform and reference Specification for Ambient Assisted Living Acronimo: universAAL Grant agreement 247950 Tipo Progetto EU_FP7 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://link.springer.com/chapter/10.1007%2F978-3-642-41043-7_3 (literal)
Note
  • PuMa (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Italy; Computer Science Department, University of Pisa; Computer Science Department, University of Pisa; Computer Science Department, University of Pisa. (literal)
Titolo
  • Multisensor data fusion for activity recognition based on reservoir computing (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-3-642-41042-0 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
  • Juan A. Botía, Juan Antonio Álvarez-García, Kaori Fujinami, Paolo Barsocchi, Till Riedel (literal)
Abstract
  • Ambient Assisted Living facilities provide assistance and care for the elderly, where it is useful to infer their daily activity for ensuring their safety and successful ageing. In this work, we present an Activity Recognition system that classifies a set of common daily activities exploiting both the data sampled by accelerometer sensors carried out by the user and the reciprocal Received Signal Strength (RSS) values coming from worn wireless sensor devices and from sensors deployed in the environment. To this end, we model the accelerometer and the RSS stream, obtained from a Wireless Sensor Network (WSN), using Recurrent Neural Networks implemented as efficient Echo State Networks (ESNs), within the Reser- voir Computing paradigm. Our results show that, with an appropriate configuration of the ESN, the system reaches a good accuracy with a low deployment cost. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Insieme di parole chiave di
data.CNR.it