Push-out stress for fibre posts luted using different adhesive strategies. (Articolo in rivista)

Type
Label
  • Push-out stress for fibre posts luted using different adhesive strategies. (Articolo in rivista) (literal)
Anno
  • 2009-01-01T00:00:00+01:00 (literal)
Alternative label
  • Mazzoni A, Marchesi G, Cadenaro M, Mazzotti G, Di Lenarda R, Ferrari M, Breschi L. (2009)
    Push-out stress for fibre posts luted using different adhesive strategies.
    in European journal of oral sciences
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Mazzoni A, Marchesi G, Cadenaro M, Mazzotti G, Di Lenarda R, Ferrari M, Breschi L. (literal)
Pagina inizio
  • 447 (literal)
Pagina fine
  • 453 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 117 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Division of Dental Sciences and Biomaterials, Department of Biomedicine, University of Trieste, Trieste, Italy; Department of Material and Natural Resources, University of Trieste, Trieste, Italy;Department of SAU&FAL, University of Bologna, Bologna, Italy; IGMCNR, Unit of Bologna, c/o IOR, Bologna, Italy (literal)
Titolo
  • Push-out stress for fibre posts luted using different adhesive strategies. (literal)
Abstract
  • The influence of thermocycling on the bond strength of fibre posts cemented with different luting approaches was investigated. A total of 84 human incisors were selected for the study. Sixty teeth were assigned to one of the following adhesive/cement combinations for push-out bond-strength evaluation: group 1, XP Bond/CoreXFlow + DT Light-Post; group 2, Panavia F 2.0 + Tech 21; or group 3, RelyX Unicem + RelyX. Bonded specimens were cut into 1-mm-thick slabs and either thermocycled (40,000 cycles) or stored in artificial saliva (control specimens) before push-out bond-strength testing. Additional specimens were processed for quantitative interfacial nanoleakage analysis. Thermocycling decreased the bond strength in specimens of groups 2 and 3, but did not affect the specimens from group 1. No difference was observed among luting approaches in control specimens. Thermocycling resulted in increased silver nitrate deposition (i.e. interfacial nanoleakage) in all groups. Within the limitations of the study, the use of an etch-and-rinse adhesive in combination with a dual-cure cement to lute fiber posts is the most stable luting procedure if compared with a self-etch resin-based cement or a self-adhesive cement, as assayed by thermocycling of the bonded specimens. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it