http://www.cnr.it/ontology/cnr/individuo/prodotto/ID276146
From chatter to headlines: harnessing the real-time web for personalized news recommendation (Contributo in atti di convegno)
- Type
- Label
- From chatter to headlines: harnessing the real-time web for personalized news recommendation (Contributo in atti di convegno) (literal)
- Anno
- 2012-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1145/2124295.2124315 (literal)
- Alternative label
De Francisci M. G., Aristides G., Lucchese C. (2012)
From chatter to headlines: harnessing the real-time web for personalized news recommendation
in Fifth ACM International Conference on Web Search and Data Mining, Seattle, Washington, USA, 8-12 February 2012
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- De Francisci M. G., Aristides G., Lucchese C. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Progetto Advanced Service Search and Enhancing Technological Solutions for the European Digital Library
Acronimo ASSETS
Grant agreement 250527
Tipo Progetto EU_FP7 (literal)
- Note
- PuMa (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- IMT, Lucca & ISTI-CNR, Pisa, Italy; Yahoo! Research, Barcelona, Spain; CNR-ISTI, Pisa, Italy; (literal)
- Titolo
- From chatter to headlines: harnessing the real-time web for personalized news recommendation (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-1-4503-0747-5 (literal)
- Abstract
- We propose a new methodology for recommending interest- ing news to users by exploiting the information in their twit- ter persona. We model relevance between users and news articles using a mix of signals drawn from the news stream and from twitter: the prole of the social neighborhood of the users, the content of their own tweet stream, and topic popularity in the news and in the whole twitter-land. We validate our approach on a real-world dataset of ap- proximately 40k articles coming from Yahoo! News and one month of crawled twitter data. We train our model using a learning-to-rank approach and support-vector machines. The train and test set are drawn from Yahoo! toolbar log data. We heuristically identify 3 214 users of twitter in the log and use their clicks on news articles to train our system. Our methodology is able to predict with good accuracy the news articles clicked by the users and rank them higher than other news articles. The results show that the com- bination of various signals from real-time web and micro- blogging platforms can be a useful resource to understand user behavior. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Editore di
- Insieme di parole chiave di