http://www.cnr.it/ontology/cnr/individuo/prodotto/ID275825
The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains (Articolo in rivista)
- Type
- Label
- The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1128/JB.02057-12 (literal)
- Alternative label
Villa R, Martorana AM, Okuda S, Gourlay LJ, Nardini M, Sperandeo P, Dehò G, Bolognesi M, Kahne D, Polissi A (2013)
The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains
in Journal of bacteriology (Print)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Villa R, Martorana AM, Okuda S, Gourlay LJ, Nardini M, Sperandeo P, Dehò G, Bolognesi M, Kahne D, Polissi A (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://jb.asm.org/content/195/5/1100 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA; Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy; CNR-IBF and CIMAINA, Università degli Studi di Milano, Milan, Italy (literal)
- Titolo
- The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains (literal)
- Abstract
- Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi