Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk (Articolo in rivista)

Type
Label
  • Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.2337/dc13-0520 (literal)
Alternative label
  • Defronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA, Clement SC, Henry RR, Kitabchi AE, Mudaliar S, Ratner RE, Stentz FB, Musi N, Reaven PD, Gastaldelli A; ACT NOW Study. (2013)
    Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk
    in Diabetes care; American Diabetes Association, Alexandria (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Defronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA, Clement SC, Henry RR, Kitabchi AE, Mudaliar S, Ratner RE, Stentz FB, Musi N, Reaven PD, Gastaldelli A; ACT NOW Study. (literal)
Pagina inizio
  • 3607 (literal)
Pagina fine
  • 3612 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.ncbi.nlm.nih.gov/pubmed/24062330 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 36 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 6 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 11 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • [ 1,2,13,15 ] Texas Diabet Inst, San Antonio, TX 78207 USA [ 1,2,13,14,15 ] Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX 78229 USA [ 3 ] Phoenix VA Hlth Care Syst, Phoenix, AZ USA [ 3 ] Arizona State Univ, Coll Nursing & Hlth Innovat, Phoenix, AZ USA [ 4 ] SUNY Hlth Sci Ctr, Brooklyn, NY USA [ 5 ] Louisiana State Univ, Pennington Biomed Res Ctr, Baton Rouge, LA 70808 USA [ 6 ] Univ So Calif, Keck Sch Med, Los Angeles, CA 90033 USA [ 7 ] Georgetown Univ, Div Endocrinol & Metab, Washington, DC USA [ 8,10 ] VA San Diego Healthcare Syst, San Diego, CA USA [ 8,10 ] Univ Calif San Diego, San Diego, CA 92103 USA [ 9 ] Univ Tennessee, Div Endocrinol Diabet & Metab, Memphis, TN USA [ 11 ] Medstar Res Inst, Hyattsville, MD USA [ 15 ] CNR, Inst Clin Physiol, Cardiometab Risk Unit, I-56100 Pisa, Italy (literal)
Titolo
  • Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk (literal)
Abstract
  • OBJECTIVE: Individuals with impaired glucose tolerance (IGT) are at high risk for developing type 2 diabetes mellitus (T2DM). We examined which characteristics at baseline predicted the development of T2DM versus maintenance of IGT or conversion to normal glucose tolerance. RESEARCH DESIGN AND METHODS: We studied 228 subjects at high risk with IGT who received treatment with placebo in ACT NOW and who underwent baseline anthropometric measures and oral glucose tolerance test (OGTT) at baseline and after a mean follow-up of 2.4 years. RESULTS: In a univariate analysis, 45 of 228 (19.7%) IGT individuals developed diabetes. After adjusting for age, sex, and center, increased fasting plasma glucose, 2-h plasma glucose, G0-120 during OGTT, HbA1c, adipocyte insulin resistance index, ln fasting plasma insulin, and ln I0-120, as well as family history of diabetes and presence of metabolic syndrome, were associated with increased risk of diabetes. At baseline, higher insulin secretion (ln [I0-120/G0-120]) during the OGTT was associated with decreased risk of diabetes. Higher ?-cell function (insulin secretion/insulin resistance or disposition index; ln [I0-120/G0-120 × Matsuda index of insulin sensitivity]; odds ratio 0.11; P < 0.0001) was the variable most closely associated with reduced risk of diabetes. CONCLUSIONS: In a stepwise multiple-variable analysis, only HbA1c and ?-cell function (ln insulin secretion/insulin resistance index) predicted the development of diabetes (r = 0.49; P < 0.0001). (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it