http://www.cnr.it/ontology/cnr/individuo/prodotto/ID272976
Support Vector Machine polyhedral separability in semisupervised learning (Articolo in rivista)
- Type
- Label
- Support Vector Machine polyhedral separability in semisupervised learning (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/s10957-013-0458-6 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- A. Astorino; A. Fuduli (literal)
- Rivista
- Note
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Istituto di Calcolo e Reti ad Alte Prestazioni-C.N.R. c/o D.E.I.S., Università della Calabria, 87036 Rende (CS), Italia, e-mail: astorino@icar.cnr.it;
Dipartimento di Matematica e Informatica, Università della Calabria, 87036 Rende (CS), Italia, e-mail: antonio.fuduli@unical.it (literal)
- Titolo
- Support Vector Machine polyhedral separability in semisupervised learning (literal)
- Abstract
- We introduce separation margin maximization, a characteristic of the Support Vector
Machine technique, into the approach to binary classification based on polyhedral
separability and we adopt a semisupervised classification framework.
In particular, our model aims at separating two finite and disjoint sets of points by
means of a polyhedral surface in the semisupervised case, that is, by exploiting
information coming from both labeled and unlabeled samples. Our formulation
requires the minimization of a nonconvex nondifferentiable error function. Numerical
results are presented on several data sets drawn from the literature. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di