http://www.cnr.it/ontology/cnr/individuo/prodotto/ID270133
BPX-preconditioning for isogeometric analysis (Articolo in rivista)
- Type
- Label
- BPX-preconditioning for isogeometric analysis (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.cma.2013.05.014 (literal)
- Alternative label
Buffa, Annalisa ; Harbrecht, Helmut ; Kunoth, Angela ; Sangalli, Giancarlo (2013)
BPX-preconditioning for isogeometric analysis
in Computer methods in applied mechanics and engineering; ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE (Svizzera)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Buffa, Annalisa ; Harbrecht, Helmut ; Kunoth, Angela ; Sangalli, Giancarlo (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.sciencedirect.com/science/article/pii/S004578251300131X (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- IMATI E. Magenes, CNR, Via Ferrata 1, 27100 Pavia, Italy;
Mathematisches Institut, Universität Basel, Rheinsprung 21, 4051 Basel, Switzerland;
Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany;
Dipartimento di Matematica F. Casorati, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy (literal)
- Titolo
- BPX-preconditioning for isogeometric analysis (literal)
- Abstract
- We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or NURBS mapping which we assume to be regular. The numerical solution of the PDE is computed by means of tensor product B-splines mapped onto the physical domain. We construct additive multilevel preconditioners and show that they are asymptotically optimal, i.e., the spectral condition number of the resulting preconditioned stiffness matrix is independent of h. Together with a nested iteration scheme, this enables an iterative solution scheme of optimal linear complexity. The theoretical results are substantiated by numerical examples in two and three space dimensions. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Editore di
- Insieme di parole chiave di