http://www.cnr.it/ontology/cnr/individuo/prodotto/ID269872
Physarum Can Compute Shortest Paths: Convergence Proofs and Complexity Bounds (Articolo in rivista)
- Type
- Label
- Physarum Can Compute Shortest Paths: Convergence Proofs and Complexity Bounds (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-642-39212-2_42 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Becchetti L; Bonifaci V; Dirnberger M; Karrenbauer A; Mehlhorn K (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Sapienza University of Rome, Rome, Italy
Istituto di Analisi dei Sistemi ed Informatica, CNR, Rome, Italy
Max Planck Institute for Computer Science, Saarbruecken, Germany (literal)
- Titolo
- Physarum Can Compute Shortest Paths: Convergence Proofs and Complexity Bounds (literal)
- Abstract
- Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model for the slime's behavior in the form of a coupled system of differential equations was proposed by Tero, Kobayashi and Nakagaki [TKN07]. We prove that a discretization of the model (Euler integration) computes a (1 + eps)-approximation of the shortest path in O( m L (logn + log L)/eps^3) iterations, with arithmetic on numbers of O(log(nL/eps)) bits; here, n and m are the number of nodes and edges of the graph, respectively, and L is the largest length of an edge. We also obtain two results for a directed Physarum model proposed by Ito et al. (2011): convergence in the general, nonuniform case and convergence and complexity bounds for the discretization of the uniform case. (literal)
- Editore
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi