http://www.cnr.it/ontology/cnr/individuo/prodotto/ID268519
Learning With Kernel Smoothing Models and Low-Discrepancy Sampling (Articolo in rivista)
- Type
- Label
- Learning With Kernel Smoothing Models and Low-Discrepancy Sampling (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1109/TNNLS.2012.2236353 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Cristiano Cervellera; Danilo Macciò (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Quartile della rivista: Q1, nel settore \"Artificial Intelligence\". (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1) Institute of Intelligent Systems for Automation, National Research Council, Genova 16149, Italy; 2) Institute of Intelligent Systems for Automation, National Research Council, Genova 16149, Italy (literal)
- Titolo
- Learning With Kernel Smoothing Models and Low-Discrepancy Sampling (literal)
- Abstract
- This brief presents an analysis of the performance of kernel smoothing models used to estimate an unknown target function, addressing the case where the choice of the training set is part of the learning process. In particular, we consider a choice of the points at which the function is observed based on low- discrepancy sequences, which is a family of sampling methods commonly employed for efficient numerical integration. We prove that, under suitable regularity assumptions, consistency of the empirical risk minimization is guaranteed with a good rate of convergence of the estimation error, as well as the convergence of the approximation error. Simulation results confirm, in practice, the good theoretical properties given by the combination of kernel smoothing models with low-discrepancy sampling. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di