Learning With Kernel Smoothing Models and Low-Discrepancy Sampling (Articolo in rivista)

Type
Label
  • Learning With Kernel Smoothing Models and Low-Discrepancy Sampling (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/TNNLS.2012.2236353 (literal)
Alternative label
  • Cristiano Cervellera; Danilo Macciò (2013)
    Learning With Kernel Smoothing Models and Low-Discrepancy Sampling
    in IEEE Transactions on Neural Networks and Learning Systems
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Cristiano Cervellera; Danilo Macciò (literal)
Pagina inizio
  • 504 (literal)
Pagina fine
  • 509 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • Quartile della rivista: Q1, nel settore \"Artificial Intelligence\". (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 24 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 6 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 3 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1) Institute of Intelligent Systems for Automation, National Research Council, Genova 16149, Italy; 2) Institute of Intelligent Systems for Automation, National Research Council, Genova 16149, Italy (literal)
Titolo
  • Learning With Kernel Smoothing Models and Low-Discrepancy Sampling (literal)
Abstract
  • This brief presents an analysis of the performance of kernel smoothing models used to estimate an unknown target function, addressing the case where the choice of the training set is part of the learning process. In particular, we consider a choice of the points at which the function is observed based on low- discrepancy sequences, which is a family of sampling methods commonly employed for efficient numerical integration. We prove that, under suitable regularity assumptions, consistency of the empirical risk minimization is guaranteed with a good rate of convergence of the estimation error, as well as the convergence of the approximation error. Simulation results confirm, in practice, the good theoretical properties given by the combination of kernel smoothing models with low-discrepancy sampling. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it