http://www.cnr.it/ontology/cnr/individuo/prodotto/ID262830
Constrained energy minimization and orbital stability for the NLS equation on a star graph (Rapporti tecnici/preprint/working paper)
- Type
- Label
- Constrained energy minimization and orbital stability for the NLS equation on a star graph (Rapporti tecnici/preprint/working paper) (literal)
- Anno
- 2012-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Adami R.; Cacciapuoti C.; Finco D.; Noja D. (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://arxiv.org/abs/1211.1515 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Note
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Dipartimento di Scienze Matematiche, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129
Torino, Italy;
Hausdorff Center for Mathematics, Institut f?ur Angewandte Mathematik, Endenicher Allee,
60, 53115 Bonn, Germany;
Facolt?a di Ingegneria, Universit?a Telematica Internazionale Uninettuno, Corso Vittorio Emanuele
II 39, 00186 Roma, Italy;
Dipartimento di Matematica e Applicazioni, Universit?a di Milano Bicocca, via R. Cozzi, 53, 20125
Milano, Italy (literal)
- Titolo
- Constrained energy minimization and orbital stability for the NLS equation on a star graph (literal)
- Abstract
- We consider a nonlinear Schr\"odinger equation with focusing nonlinearity of power type on a star graph ${\mathcal G}$, written as $ i \partial_t \Psi (t) = H \Psi (t) - |\Psi (t)|^{2\mu}\Psi (t)$, where $H$ is the selfadjoint operator which defines the linear dynamics on the graph with an attractive $\delta$ interaction, with strength $\alpha < 0$, at the vertex. The mass and energy functionals are conserved by the flow. We show that for {2}<\mu<2$ the energy at fixed mass is bounded from below and that for every mass $m$ below a critical mass $m^*$ it attains its minimum value at a certain $\hat \Psi_m \in H^1(\GG) $, while for $m>m^*$ there is no minimum. Moreover, the set of minimizers has the structure ${\mathcal M}={e^{i\theta}\hat \Psi_m, \theta\in \erre}$. Correspondingly, for every $m
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di