Minimum-density anomaly and spatial ordering of softly repulsive particles in a narrow channel (Articolo in rivista)

Type
Label
  • Minimum-density anomaly and spatial ordering of softly repulsive particles in a narrow channel (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1039/c3sm51831k (literal)
Alternative label
  • Prestipino S, Saija F, Sergi A, Giaquinta PV (2013)
    Minimum-density anomaly and spatial ordering of softly repulsive particles in a narrow channel
    in Soft matter (Print); RSC Publishing, Cambridge (Regno Unito)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Prestipino S, Saija F, Sergi A, Giaquinta PV (literal)
Pagina inizio
  • 9876 (literal)
Pagina fine
  • 9886 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 9 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 11 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 41 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-Istituto per i processi chimico-fisici Dipartimento di Fisica e Scienza della Terra School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, and National Institute for Theoretical Physics (NITheP), (literal)
Titolo
  • Minimum-density anomaly and spatial ordering of softly repulsive particles in a narrow channel (literal)
Abstract
  • We performed an extensive numerical investigation of a system of repulsive Gaussian particles confined in a thin cylindrical pore. In this setting, the fluid phase can be cooled down to very low temperatures, thus bypassing the freezing transition. Focusing on the thermal behavior of the average number density, we find a range of pressures within which, upon cooling, the system density first approaches a maximum that is then followed by a minimum at lower temperatures. As the width of the pore is reduced, the density minimum shifts to larger pressures, in line with what happens in the same model in one dimension. As far as the system structure is concerned, a pronounced layering is observed at the wall; moreover, when the pore radius is not too small, the relative fraction of solid-like (i.e., well coordinated) particles increases overall on cooling, in a somewhat larger amount when crossing the region bounded by the two density extrema. On account of this phenomenology, we surmise that the anomalous behavior of the system density stems from the smoothening of the density jump occurring at the threedimensional freezing point. By analogy, our findings suggest that the essential driving mechanism leading to the volumetric anomaly exhibited by supercooled water confined in silica nanopores at ambient pressure is an effective soft repulsion between water molecules at short distances. (literal)
Editore
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
data.CNR.it