http://www.cnr.it/ontology/cnr/individuo/prodotto/ID261333
Induction of dopaminergic neurons from human Wharton's jelly mesenchymal stem cells by forskolin (Articolo in rivista)
- Type
- Label
- Induction of dopaminergic neurons from human Wharton's jelly mesenchymal stem cells by forskolin (Articolo in rivista) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Alternative label
Emanuela Paldino1, Carlo Cenciarelli 2, Adele Giampaolo3, Luisa Milazzo3, Mario Pescatori4, Hamisa Jane Hassan 3, Patrizia Casalbore1 (2014)
Induction of dopaminergic neurons from human Wharton's jelly mesenchymal stem cells by forskolin
in Journal of cellular physiology (Online)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Emanuela Paldino1, Carlo Cenciarelli 2, Adele Giampaolo3, Luisa Milazzo3, Mario Pescatori4, Hamisa Jane Hassan 3, Patrizia Casalbore1 (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1 Institute of Cell Biology and Neurobiology, National Research Council, 00143 Rome, Italy
2 Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
3 Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
4 Departement of Surgery, Erasmus MC, Rotterdam, The Netherland (literal)
- Titolo
- Induction of dopaminergic neurons from human Wharton's jelly mesenchymal stem cells by forskolin (literal)
- Abstract
- The purpose of this study was to investigate the Wharton's jelly mesenchymal stem cells differentiation ability toward neuronal fate. Human Wharton's jelly mesenchymal stem cells (hWJMSC) have been isolated from human umbilical cord of full-term births and characterized by flow cytometry analysis for their stem mesenchymal properties through specific surface markers expression (CD73,CD90, and CD105). hWJMSC mesodermal lineage differentiation ability and karyotype analysis were assessed. The trans-differentiationof hWJMSC into neural lineage was investigated in presence of forskolin, an agent known to increase the intracellular levels of cAMP. A molecular profile of differentiated hWJMSC was performed by microarray technology which revealed 1,532 statistically significant modulated genes respect to control cells. Most of these genes are mainly involved in functional neuronal signaling pathways and part of them are specifically required for the neuronal dopaminergic induction. The acquisition of the dopaminergic phenotype was evaluated via immunocytochemistry and Western blot analysis revealed the significant induction of Nurr1, NeuroD1, and TH proteins expression in forskolin-induced hWJMSC. Moreover, the treatment with forskolin promoted, in hWJMSC, a strong upregulation of the neurotrophin Trk receptors related to the high release of brain-derived neurotrophic factor. Taken together these findings show that hWJMSC may be represent an optimal therapeutic strategy for neurological diseases. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi