Cytochrome C on a gold surface: investigating structural relaxations and their role in protein-surface electron transfer by molecular dynamics simulations (Articolo in rivista)

Type
Label
  • Cytochrome C on a gold surface: investigating structural relaxations and their role in protein-surface electron transfer by molecular dynamics simulations (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1039/c3cp00146f (literal)
Alternative label
  • Siwko M. E. [ 1,2 ] ; Corni S. [ 2 ] (2013)
    Cytochrome C on a gold surface: investigating structural relaxations and their role in protein-surface electron transfer by molecular dynamics simulations
    in PCCP. Physical chemistry chemical physics (Print); ROYAL SOC CHEMISTRY, THOMAS GRAHAM HOUSE,, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND (Regno Unito)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Siwko M. E. [ 1,2 ] ; Corni S. [ 2 ] (literal)
Pagina inizio
  • 5945 (literal)
Pagina fine
  • 5956 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 15 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • [ 1 ] Univ Modena & Reggio Emilia, Dept Phys, Modena, Italy [ 2 ] CNR Inst Nanosci, Ctr S3, Modena, Italy (literal)
Titolo
  • Cytochrome C on a gold surface: investigating structural relaxations and their role in protein-surface electron transfer by molecular dynamics simulations (literal)
Abstract
  • Proteins immobilized on inorganic surfaces are important in technological fields such as biosensors, enzymatic biofuel cells and biomolecular electronics. In these frameworks, it has been demonstrated that some proteins are able to keep their functionality, although the latter may be somewhat modified by the interaction with the surface. Cytochrome C, an heme-based electron transfer protein, has been found to be able to exchange electrons with the gold surface on which it is immobilized, but some deviations from the expected electron transfer rates were evidenced [C. A. Bortolotti, et al., J. Phys. Chem. C 2007, 111, 12100-12105]. In this work we have used molecular dynamics simulations of (native and mutated) yeast cytochrome C supported on Au(111) to investigate the microscopic picture behind the experimental behavior of the molecule. In particular, we have focused on the structural re-arrangements due to the interactions with the surface. We found that, despite being secondary-structure preserving, they can profoundly affect protein-surface electronic coupling and, in turn, electron transfer rates, explaining experimental findings. The conformational flexibility of the protein in the region of the protein-surface bond is thus pivotal in determining the resulting ET functionality of the immobilized protein. (literal)
Editore
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
data.CNR.it