http://www.cnr.it/ontology/cnr/individuo/prodotto/ID250742
An Interactive Analysis of Harmonic and Diffusion Equations on Discrete 3D Shapes (Articolo in rivista)
- Type
- Label
- An Interactive Analysis of Harmonic and Diffusion Equations on Discrete 3D Shapes (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.cag.2013.03.006 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Giuseppe Patané, Michela Spagnuolo (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Special Section on 3D Object Retrieval (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.sciencedirect.com/science/article/pii/S0097849313000460 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Google Scholar (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche, Via De Marini, 6, 16149 Genova, Italy (literal)
- Titolo
- An Interactive Analysis of Harmonic and Diffusion Equations on Discrete 3D Shapes (literal)
- Abstract
- Recent results in geometry processing have shown that shape segmentation, comparison, and analysis can be successfully addressed through the spectral properties of the Laplace-Beltrami operator, which is involved in the harmonic equation, the Laplacian eigenproblem, the heat diffusion equation, and the definition of spectral distances, such as the bi-harmonic, commute time, and diffusion distances. In this paper, we study the discretization and the main properties of the solutions to these equations on 3D surfaces and their applications to shape analysis. Among the main factors that influence their computation, as well as the corresponding distances, we focus our attention on the choice of different Laplacian matrices, initial boundary conditions, and input shapes. These degrees of freedom motivate our choice to address this study through the executable paper, which allows the user to perform a large set of experiments and select his/her own parameters. Finally, we represent these distances in a unified way and provide a simple procedure to generate new distances on 3D shapes. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di