Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates (Articolo in rivista)

Type
Label
  • Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates (Articolo in rivista) (literal)
Anno
  • 1990-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1103/PhysRevA.41.5807 (literal)
Alternative label
  • G. Fonte and P. Falsaperla (1), G. Schiffrer (2), D. Stanzial (3) (1990)
    Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates
    in Physical review. A; APS, American physical society, College Park, MD (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • G. Fonte and P. Falsaperla (1), G. Schiffrer (2), D. Stanzial (3) (literal)
Pagina inizio
  • 5807 (literal)
Pagina fine
  • 5813 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • PACS: 02.60.+y, 32.60.+i (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://link.aps.org/doi/10.1103/PhysRevA.41.5807 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 41 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 7 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • (1) Dipartimento di Fisica, Università di Catania, Corso Italia 57, I-95129 Catania, Italy (2) Dipartimento di Fisica, Università di Ferrara, via Paradiso 12, I-44100, Ferrara, Italy (3) Istituto Cemoter Consiglio Nazionale delle Ricerche, via Canalbianco 28, I-44044 Cassana, Ferrara, Italy (literal)
Titolo
  • Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates (literal)
Abstract
  • We present a variational method, based on direct minimization of energy, for the calculation of eigenvalues and eigenfunctions of a hydrogen atom in a strong uniform magnetic field in the framework of the nonrelativistic theory (quadratic Zeeman effect). Using semiparabolic coordinates and a harmonic-oscillator basis, we show that it is possible to give rigorous error estimates for both eigenvalues and eigenfunctions by applying some results of Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)]. The method can be applied in this simple form only to the lowest level of given angular momentum and parity, but it is also possible to apply it to any excited state by using the standard Rayleigh-Ritz diagonalization method. However, due to the particular basis, the method is expected to be more effective, the weaker the field and the smaller the excitation energy, while the results of Kato we have employed lead to good estimates only when the level spacing is not too small. We present a numerical application to the mp=0+ ground state and the lowest mp=1- excited state, giving results that are among the most accurate in the literature for magnetic fields up to about 1010 G. © 1990 The American Physical Society (literal)
Editore
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Editore di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it