http://www.cnr.it/ontology/cnr/individuo/prodotto/ID241733
On the physical and the self-similar viscous approximation of a boundary Riemann problem (Contributo in atti di convegno)
- Type
- Label
- On the physical and the self-similar viscous approximation of a boundary Riemann problem (Contributo in atti di convegno) (literal)
- Anno
- 2012-01-01T00:00:00+01:00 (literal)
- Alternative label
Cleopatra Christoforou; Laura V. Spinolo (2012)
On the physical and the self-similar viscous approximation of a boundary Riemann problem
in Intensive Research Month on Hyperbolic Conservation Laws and Fluid Dynamics, Parma, 1-28 febbraio 2010
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Cleopatra Christoforou; Laura V. Spinolo (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://rivista.math.unipr.it/vols/2012-3-1/indice.html (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Proceedings of the Intensive Research Month on Hyperbolic Conservation Laws and Fluid Dynamics (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus;
Institut für Mathematik, Universität Zürich, Switzerland (literal)
- Titolo
- On the physical and the self-similar viscous approximation of a boundary Riemann problem (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Emilio Acerbi, Claudio Arezzo, Gianluca Crippa, Camillo De Lellis, Giuseppe Mingione (literal)
- Abstract
- We deal with the viscous approximation of a system of conservation laws in one space dimension and we focus on initial-boundary value problems. It is known that, in general, different viscous approximation provide different limits because of boundary layer phenomena. We focus on Riemann-type data and we discuss a uniqueness criterion for distributional solutions which applies to both the non characteristic and the boundary characteristic case. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Editore di
- Insieme di parole chiave di