Optimization using quantum mechanics: quantum annealing through adiabatic evolution (Articolo in rivista)

Type
Label
  • Optimization using quantum mechanics: quantum annealing through adiabatic evolution (Articolo in rivista) (literal)
Anno
  • 2006-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1088/0305-4470/39/36/R01 (literal)
Alternative label
  • Santoro, GE; Tosatti, E (2006)
    Optimization using quantum mechanics: quantum annealing through adiabatic evolution
    in Journal of physics. A, mathematical and general (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Santoro, GE; Tosatti, E (literal)
Pagina inizio
  • R393 (literal)
Pagina fine
  • R431 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 39 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 38 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Scuola Int Super Studi Avanzati, SISSA, I-34014 Trieste, Italy; Democritos Nacl Simulat Ctr, CNR, INFM, I-34014 Trieste, Italy; Int Ctr Theoret Phys, Trieste, Italy (literal)
Titolo
  • Optimization using quantum mechanics: quantum annealing through adiabatic evolution (literal)
Abstract
  • We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'h' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models - double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schrodinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau -Zener tunnelling phenomena is discussed and emphasized. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it