Simulation and anticipation as tools for coordinating with the future (Contributo in volume (capitolo o saggio))

Type
Label
  • Simulation and anticipation as tools for coordinating with the future (Contributo in volume (capitolo o saggio)) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Alternative label
  • Dindo, Haris [1]; La Tona, Giuseppe [1]; Nivel, Heric [2]; Pezzulo, Giovanni [3]; Chella, Antonio [1]; Thorisson, Kristinn R. [4] (2012)
    Simulation and anticipation as tools for coordinating with the future
    Springer-Verlag, Berlin Heidelberg (Germania) in Biologically Inspired Cognitive Architectures, 2012
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Dindo, Haris [1]; La Tona, Giuseppe [1]; Nivel, Heric [2]; Pezzulo, Giovanni [3]; Chella, Antonio [1]; Thorisson, Kristinn R. [4] (literal)
Pagina inizio
  • 117 (literal)
Pagina fine
  • 125 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • ID_PUMA: /cnr.ilc/2012-A1-002 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://link.springer.com/content/pdf/10.1007%2F978-3-642-34274-5_24 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
  • Biologically Inspired Cognitive Architectures (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
  • 196 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • [1] University of Palermo Computer Science Engineering Viale delle Scienze, Ed. 6, Palermo, Italy; [2] Center for Analysis & Design of Intelligent Agents and School of Computer Science (CADIA), Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland; [3] CNR-ISTC, Roma; [4] Icelandic Institute for Intelligent Machines, Uranus 2. h., Menntavegur 1, IS-101 Reykjavik, Iceland (literal)
Titolo
  • Simulation and anticipation as tools for coordinating with the future (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
  • A. Chella et al. (Eds.) (literal)
Abstract
  • A key goal in designing an artificial intelligence capable of performing complex tasks is a mechanism that allows it to efficiently choose appropriate and relevant actions in a variety of situations and contexts. Nowhere is this more obvious than in the case of building a general intelligence, where the contextual choice and application of actions must be done in the presence of large numbers of alternatives, both subtly and obviously distinct from each other. We present a framework for action selection based on the concurrent activity of multiple forward and inverse models. A key characteristic of the proposed system is the use of simulation to choose an action: the system continuously simulates the external states of the world (proximal and distal) by internally emulating the activity of its sensors, adopting the same decision process as if it were actually operating in the world, and basing subsequent choice of action on the outcome of such simulations. The work is part of our larger effort to create new observation-based machine learning techniques. We describe our approach, an early implementation, and an evaluation in a classical AI problem-solving domain: the Sokoban puzzle. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Editore di
Insieme di parole chiave di
data.CNR.it