Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy (Articolo in rivista)

Type
Label
  • Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy (Articolo in rivista) (literal)
Anno
  • 2007-01-01T00:00:00+01:00 (literal)
Alternative label
  • Casuso, I; Fumagalli, L; Samitier, J; Padros, E; Reggiani, L; Akimov, V; Gomila, G (2007)
    Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy
    in Nanotechnology (Bristol. Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Casuso, I; Fumagalli, L; Samitier, J; Padros, E; Reggiani, L; Akimov, V; Gomila, G (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 18 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Univ Barcelona, Dept Elect, Barcelona, Spain; IBEC, Lab Nanobioengn, Barcelona, Spain; Univ Autonoma Barcelona, Fac Med, Dept Bioquim & Biol Mol, Unitat Biofis, E-08193 Barcelona, Spain; Univ Autonoma Barcelona, Ctr Estudis Biofis, E-08193 Barcelona, Spain; Univ Lecce, Dipartimento Ingn Innovaz, CNR INFM, Natl Nanotechnol Lab, I-73100 Lecce, Italy (literal)
Titolo
  • Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy (literal)
Abstract
  • We present a reliable methodology to perform electron transport measurements at the nanoscale on supported biomembranes by conductive atomic force microscopy (C-AFM). It allows measurement of both ( a) non-destructive conductive maps and (b) force controlled current-voltage characteristics in wide voltage bias range in a reproducible way. Tests experiments were performed on purple membrane monolayers, a two-dimensional (2D) crystal lattice of the transmembrane protein bacteriorhodopsin. Non-destructive conductive images show uniform conductivity of the membrane with isolated nanometric conduction defects. Current-voltage characteristics under different compression conditions show non-resonant tunneling electron transport properties, with two different conduction regimes as a function of the applied bias, in excellent agreement with theoretical predictions. This methodology opens the possibility for a detailed study of electron transport properties of supported biological membranes, and of soft materials in general. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it