Scalable analysis of movement data for extracting and exploring significant places (Articolo in rivista)

Type
Label
  • Scalable analysis of movement data for extracting and exploring significant places (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/TVCG.2012.311 (literal)
Alternative label
  • Andrienko G., Andrienko N., Hurter C., Rinzivillo S., Wroebel S. (2013)
    Scalable analysis of movement data for extracting and exploring significant places
    in IEEE transactions on visualization and computer graphics (Online); IEEE Computer Society, Washington, DC (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Andrienko G., Andrienko N., Hurter C., Rinzivillo S., Wroebel S. (literal)
Pagina inizio
  • 1078 (literal)
Pagina fine
  • 1094 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • [Online First 26 November 2012] (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6361385 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 19 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 7 (literal)
Note
  • PuMa (literal)
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Fraunhofer Institute for Intelligent Analysis and Information Systems, Germany; Fraunhofer IAIS Intelligent Analysis and Information Systems, Sankt Augustin University, Bonn, Germany; ENAC and the University of Toulouse, France; CNR-ISTI, Pisa, Italy; Fraunhofer IAIS Intelligent Analysis and Information Systems, Sankt Augustin University, Bonn, Germany; (literal)
Titolo
  • Scalable analysis of movement data for extracting and exploring significant places (literal)
Abstract
  • Place-oriented analysis of movement data, i.e., recorded tracks of moving objects, includes finding places of interest in which certain types of movement events occur repeatedly and investigating the temporal distribution of event occurrences in these places and, possibly, other characteristics of the places and links between them. For this class of problems, we propose a visual analytics procedure consisting of four major steps: (1) event extraction from trajectories; (2) extraction of relevant places based on event clustering; (3) spatio-temporal aggregation of events or trajectories; (4) analysis of the aggregated data. All steps can be fulfilled in a scalable way with respect to the amount of the data under analysis; therefore, the procedure is not limited by the size of the computer's RAM and can be applied to very large datasets. We demonstrate the use of the procedure by example of two real-world problems requiring analysis at different spatial scales. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Editore di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it