http://www.cnr.it/ontology/cnr/individuo/prodotto/ID215522
A study of monodromy in the computation of multidimensional persistence (Contributo in atti di convegno)
- Type
- Label
- A study of monodromy in the computation of multidimensional persistence (Contributo in atti di convegno) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Alternative label
Andrea Cerri, Marc Ethier, and Patrizio Frosini (2013)
A study of monodromy in the computation of multidimensional persistence
in DGCI 2013 - 17th IAPR International Conference on Discrete Geometry for Computer Imagery, Seville, Spain, 20-22 Marzo 2013
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Andrea Cerri, Marc Ethier, and Patrizio Frosini (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Note
- Google Scholar (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- IMATI - CNR, Genova, Italia
Département de mathématiques, Université de Sherbrooke, Sherbrooke (Québec), Canada
Dipartimento di Matematica, Universit`a di Bologna, Italia
ARCES, Università di Bologna, Italia (literal)
- Titolo
- A study of monodromy in the computation of multidimensional persistence (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano (literal)
- Abstract
- The computation of multidimensional persistent Betti numbers
for a sublevel filtration on a suitable topological space equipped with
a Rn-valued continuous filtering function can be reduced to the problem
of computing persistent Betti numbers for a parameterized family of
one-dimensional filtering functions. A notion of continuity for points in
persistence diagrams exists over this parameter space excluding a discrete
number of so-called singular parameter values. We have identified
instances of nontrivial monodromy over loops in nonsingular parameter
space. In other words, following cornerpoints of the persistence diagrams
along nontrivial loops can result in them switching places. This has an
important incidence, e.g., in computer-assisted shape recognition, as we
believe that new, improved distances between shape signatures can be
defined by considering continuous families of matchings between cornerpoints
along paths in nonsingular parameter space. Considering that
nonhomotopic paths may yield different matchings will therefore be necessary.
In this contribution we will discuss theoretical properties of the
monodromy in question and give an example of a filtration in which it
can be shown to be nontrivial. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Insieme di parole chiave di