http://www.cnr.it/ontology/cnr/individuo/prodotto/ID209566
Self-Assembled Multilayer Graphene Oxide Membrane and Carbon Nanotubes Synthesized Using a Rare Form of Natural Graphite (Articolo in rivista)
- Type
- Label
- Self-Assembled Multilayer Graphene Oxide Membrane and Carbon Nanotubes Synthesized Using a Rare Form of Natural Graphite (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1021/jp402428j (literal)
- Alternative label
A. R. Kumarasinghe, L. Samaranayake, F. Bondino, E. Magnano, N. S. Kottegoda, E. Carlino, U. N. Ratnayaka, A. de Alwis, V. Karunaratne and G. A. J. Amaratunga (2013)
Self-Assembled Multilayer Graphene Oxide Membrane and Carbon Nanotubes Synthesized Using a Rare Form of Natural Graphite
in Journal of physical chemistry. C. (Online)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- A. R. Kumarasinghe, L. Samaranayake, F. Bondino, E. Magnano, N. S. Kottegoda, E. Carlino, U. N. Ratnayaka, A. de Alwis, V. Karunaratne and G. A. J. Amaratunga (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Sri Lanka Institute of Nanotechnology (SLINTEC), Zone 1, FTZ, Biyagama, Colombo, Sri Lanka
Laboratorio Nazionale TASC, S.S. 14 Km. 1635, Basovizza, I-34149, Trieste, Italy
Centre of Advanced Photonics and Electronics, Department of Engineering, University of Cambridge, 9 J. J. Thomson Avenue,
Cambridge, CB 3 0 FA, United Kingdom (literal)
- Titolo
- Self-Assembled Multilayer Graphene Oxide Membrane and Carbon Nanotubes Synthesized Using a Rare Form of Natural Graphite (literal)
- Abstract
- The fabrication of flexible multilayer graphene oxide (GO)
membrane and carbon nanotubes (CNTs) using a rare form of high-purity
natural graphite, vein graphite, is reported for the first time. Graphite oxide
is synthesized using vein graphite following Hummer's method. By
facilitating functionalized graphene sheets in graphite oxide to selfassemble,
a multilayer GO membrane is fabricated. Electric arc discharge is
used to synthesis CNTs from vein graphite. Both multilayer GO
membrane and CNTs are investigated using microscopy and spectroscopy
experiments, i.e., scanning electron microscopy (SEM), atomic force
microscopy (AFM), high-resolution transmission electron microscopy
(HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray
diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron
spectroscopy, and C K-edge X-ray absorption spectroscopy
(NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different
techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite,
preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and
pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -C?O,-C-
O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein
graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs)
are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs)
are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to
using vein graphite as the source material for the synthesis of carbon nanomaterials. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi