http://www.cnr.it/ontology/cnr/individuo/prodotto/ID208626
An extensible six-step methodology to automatically generate fuzzy DSSs for diagnostic applications (Articolo in rivista)
- Type
- Label
- An extensible six-step methodology to automatically generate fuzzy DSSs for diagnostic applications (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1186/1471-2105-14-S1-S4 (literal)
- Alternative label
Antonio d'Acierno, Massimo Esposito, Giuseppe De Pietro (2013)
An extensible six-step methodology to automatically generate fuzzy DSSs for diagnostic applications
in BMC bioinformatics; Biomed Central Ltd., London (Regno Unito)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Antonio d'Acierno, Massimo Esposito, Giuseppe De Pietro (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.biomedcentral.com/1471-2105/14/S1/S4 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- Scopu (literal)
- PubMe (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- ISA-CNR, ICAR-CNR, ICAR-CNR (literal)
- Titolo
- An extensible six-step methodology to automatically generate fuzzy DSSs for diagnostic applications (literal)
- Abstract
- Background
The diagnosis of many diseases can be often formulated as a decision problem; uncertainty affects these problems so that many computerized Diagnostic Decision Support Systems (in the following, DDSSs) have been developed to aid the physician in interpreting clinical data and thus to improve the quality of the whole process. Fuzzy logic, a well established attempt at the formalization and mechanization of human capabilities in reasoning and deciding with noisy information, can be profitably used. Recently, we informally proposed a general methodology to automatically build DDSSs on the top of fuzzy knowledge extracted from data.
Methods
We carefully refine and formalize our methodology that includes six stages, where the first three stages work with crisp rules, whereas the last three ones are employed on fuzzy models. Its strength relies on its generality and modularity since it supports the integration of alternative techniques in each of its stages.
Results
The methodology is designed and implemented in the form of a modular and portable software architecture according to a component-based approach. The architecture is deeply described and a summary inspection of the main components in terms of UML diagrams is outlined as well. A first implementation of the architecture has been then realized in Java following the object-oriented paradigm and used to instantiate a DDSS example aimed at accurately diagnosing breast masses as a proof of concept.
Conclusions
The results prove the feasibility of the whole methodology implemented in terms of the architecture proposed. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Editore di
- Insieme di parole chiave di